7£®ÒÑÖª£ºÈçͼ£¬¶Ô³ÆÖáΪֱÏß$x=\frac{3}{2}$µÄÅ×ÎïÏßy=ax2+bx+cÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬Á¬½ÓBC¡¢AC£¬ÇÒOB=$\frac{1}{2}$OA=$\frac{1}{3}$OC£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©ÈôµãPΪÏ߶ÎACÉϵÄÒ»µã£¬¹ýP×÷PM¡ÍxÖáÓÚµãM£¬PQ¡ÎxÖá½»BCÓÚµãQ£¬ÔÙ¹ýµãQ×÷QN¡ÍxÖáÓÚµãN£¬ÇóËıßÐÎPMNQΪÕý·½ÐÎʱµãPµÄ×ø±ê£»
£¨3£©Èô¶¯µãE´ÓµãA³ö·¢£¬ÑØxÖáÏòµãBÔ˶¯£¨µãEÓëµãA¡¢B²»Öغϣ©£¬¹ýµãE×÷Ö±ÏßlƽÐÐBC£¬½»ACÓÚµãD£¬Á¬½ÓCE£®ÉèAEµÄ³¤Îªm£¬Çó¡÷CDEµÄÃæ»ý×î´óʱ£¬µãEµ½Ö±ÏßBCµÄ¾àÀ룮

·ÖÎö £¨1£©¸ù¾ÝA¡¢B¹ØÓÚx=$\frac{3}{2}$¶Ô³Æ£¬¼°OB=$\frac{1}{2}$OA=$\frac{1}{3}$OC£¬¿ÉµÃA¡¢B¡¢CµÄ×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃAC¡¢BCµÄ½âÎöʽ£¬¸ù¾ÝPÔÚACÉÏ£¬¿ÉµÃPµã×ø±ê£¬¸ù¾ÝPM¡ÍxÖáÓÚµãM£¬¿ÉµÃPMµÄ³¤£¬¸ù¾ÝPQ¡ÎxÖá½»BCÓÚµãQ£¬¿ÉµÃQµãµÄ×ø±ê£¬¸ù¾ÝÕý·½Ðεı߳¤ÏàµÈ£¬¿ÉµÃ¹ØÓÚaµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃPµã×ø±ê£»
£¨3£©¸ù¾ÝƽÐÐÏß¼äµÄ¹Øϵ£¬¿ÉµÃDEµÄ½âÎöʽ£¬¸ù¾ÝÁªÁ¢·½³Ì×飬¿ÉµÃDµã×ø±ê£¬¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃEDµÄ³¤£¬¸ù¾ÝƽÐÐÏß¼äµÄ¾àÀëÏàµÈ£¬¿ÉµÃEµ½BCµÄ¾àÀëÓëCµ½DEµÄ¾àÀëÏàµÈ£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ¶þ´Îº¯Êý£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿ÉµÃmµÄÖµ£¬¸ù¾Ý´úÊýʽÇóÖµ£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÅ×ÎïÏßy=ax2+bx+cÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬Á¬½ÓBC¡¢AC£¬ÇÒOB=$\frac{1}{2}$OA=$\frac{1}{3}$OC£¬
ÉèOB=-a£¬OA=2a£¬OC=-3a£®
ÓÉAB¹ØÓÚx=$\frac{3}{2}$¶Ô³Æ£¬µÃ
$\frac{-a+2a}{2}$=$\frac{3}{2}$£¬
½âµÃa=3£¬B£¨3£¬0£©£¬A£¨6£¬0£©£¬C£¨0£¬-9£©£®
½«A¡¢B¡¢CµãµÄ×ø±ê´úÈëÅ×ÎïÏß½âÎöʽ£¬µÃ
$\left\{\begin{array}{l}{9a-3b+c=0}\\{36a+6b+c=0}\\{c=-9}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-\frac{3}{2}}\\{c=-9}\end{array}\right.$£¬
Å×ÎïÏߵĺ¯Êý±í´ïʽy=$\frac{1}{2}$x2-$\frac{3}{2}$x-9£»

£¨2£©ÉèACµÄ½âÎöʽΪy=k1x+b1£¬
½«A¡¢Cµã×ø±ê£¬µÃ$\left\{\begin{array}{l}{-6{k}_{1}+{b}_{1}=0}\\{{b}_{1}=-9}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{{k}_{1}=\frac{3}{2}}\\{{b}_{1}=9}\end{array}\right.$£¬
ACµÄ½âÎöʽΪy=$\frac{3}{2}$x-9£¬
PÔÚACÉÏ£¬ÉèPµã×ø±êΪ£¨a£¬$\frac{3}{2}$a-9£©£¬PM=|$\frac{3}{2}$a-9|£®
BCµÄ½âÎöʽΪy=-3x-9£¬
PQ¡ÎxÖáQµãµÄ×Ý×ø±êΪ$\frac{3}{2}$a-9£¬
½«QµãµÄ×Ý×ø±ê´úÈ뺯Êý½âÎöʽ£¬µÃ-3x-9=$\frac{3}{2}$a-9£¬
½âµÃx=-$\frac{a}{2}$£®
PQ=a-£¨-$\frac{a}{2}$£©=$\frac{3}{2}$a£¬
ÓÉËıßÐÎPMNQΪÕý·½ÐΣ¬µÃPQ=PM£¬¼´$\frac{3}{2}$a=$\frac{3}{2}$a-9»ò$\frac{3}{2}$a=9-$\frac{3}{2}$a£¬
½âµÃa=3£¬$\frac{3}{2}$a-9=-$\frac{9}{2}$£¬
ËıßÐÎPMNQΪÕý·½ÐÎʱµãPµÄ×ø±êÊÇ£¨3£¬-$\frac{9}{2}$£©£»
£¨3£©Eµã×ø±êΪ£¨6-m£¬0£©£¬µãE×÷Ö±ÏßlƽÐÐBC£¬
ÉèDEµÄ½âÎöʽΪy=-3x+b£¬½«Eµã×ø±ê´úÈ룬µÃ
-3£¨6-m£©+b=0£¬£®½âµÃb=18-3m£¬
DEµÄ½âÎöʽΪy=-3x+18-3m£¬
ÁªÁ¢DEÓëAC£¬µÃ
$\left\{\begin{array}{l}{y=-3x+18-3m}\\{y=\frac{3}{2}x-9}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=6-\frac{2}{3}m}\\{y=-m}\end{array}\right.$£¬
Dµã×ø±êΪ£¨6-$\frac{2}{3}$m£¬-m£©£¬
Óɹ´¹É¶¨Àí£¬µÃDE=$\sqrt{[£¨6-m£©-£¨6-\frac{2}{3}m£©]^{2}+{m}^{2}}$=$\frac{\sqrt{10}}{3}$m£¬
Eµ½BCµÄ¾àÀë$\frac{|3£¨6-m£©+0+9|}{\sqrt{£¨-3£©^{2}+1}}$=$\frac{|27-3m|}{\sqrt{10}}$£¬
Eµ½BCµÄ¾àÀëÓëDµ½BCµÄ¾àÀëÏàµÈ£¬µÃDµ½BCµÄ¾àÀëÊÇ$\frac{27-3m}{\sqrt{10}}$£¬
S¡÷CDE=$\frac{1}{2}$•$\frac{27-3m}{\sqrt{10}}$$•\frac{\sqrt{10}m}{3}$=$\frac{1}{2}$[£¨-£¨m-$\frac{9}{2}$£©2+$\frac{81}{4}$]
µ±m=$\frac{9}{2}$ʱ£¬S¡÷CDE×î´ó£®
¼´m=$\frac{9}{2}$£¬S¡÷CDE×î´óʱ£¬Dµ½BCµÄ¾àÀëÊÇ$\frac{27-3m}{\sqrt{10}}$=$\frac{27-3¡Á\frac{9}{2}}{\sqrt{10}}$=$\frac{27\sqrt{10}}{20}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬£¨1£©ÀûÓÃA¡¢B¹ØÓÚx=$\frac{3}{2}$¶Ô³Æ£¬¼°OB=$\frac{1}{2}$OA=$\frac{1}{3}$OCµÃ³öA¡¢B¡¢CµÄ×ø±êÊǽâÌâ¹Ø¼ü£»£¨2£©ÀûÓÃͼÏóÉϵĵãÂú×㺯Êý½âÎöʽµÃ³öPµã×ø±ê£¬ÓÖÀûÓÃƽÐÐÓÚxÖáµÄÖ±ÏßÉϵãµÄ×Ý×ø±êÏàµÈµÃ³öQµã×ø±ê£¬ÀûÓÃÕý·½ÐεÄÐÔÖʵóö¹ØÓÚaµÄ·½³ÌÊǽâÌâ¹Ø¼ü£»£¨3£©ÀûÓÃÀûÓýⷽ³Ì×éµÃ³öDµã×ø±ê£¬ÀûÓù´¹É¶¨ÀíµÃ³öDEµÄ³¤£¬ÀûÓÃƽÐÐÏß¼äµÄ¾àÀëÏàµÈµÃ³öEµ½BCµÄ¾àÀëÓëCµ½DEµÄ¾àÀëÏàµÈÊǽâÌâ¹Ø¼ü£¬ÓÖÀûÓÃÁ˶þ´Îº¯ÊýµÄÐÔÖÊ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èôy=2$\sqrt{x-2}$+$\sqrt{2-x}$+$\frac{1}{3}$£¬Çó$\sqrt{x}+\sqrt{y}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚÏÂÁÐ4¸öµÈʽÖУº¢Ùy=x+1£»¢Úy=-2x£»¢Ûy2=x£»¢Üy=x2£¬yÊÇxµÄº¯ÊýµÄÊǢ٢ڢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁз½³Ì×éÖУ¬ÊǶþÔªÒ»´Î·½³Ì×éµÄÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x-3=0}\\{3x-2y=7}\end{array}\right.$B£®$\left\{\begin{array}{l}{2x-y=3}\\{3xy=8}\end{array}\right.$
C£®$\left\{\begin{array}{l}{x+y=3}\\{x-z=5}\end{array}\right.$D£®$\left\{\begin{array}{l}{\frac{1}{2}x+\frac{3}{y}=4}\\{\frac{1}{3}x+\frac{1}{2}y=1}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚƽÐÐËıßÐÎABCDÖУ¬¡ÏBAD=60¡ã£¬AB=6£¬AC=6$\sqrt{3}$£¬Çó?ABCDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬Óг¤Îª24cmµÄÀé°Ê£¬Ò»ÃæÀûÓÃǽ£¨Ç½³¤10m£©Î§³ÉÖмä¸ôµÀÀé°ÊµÄ³¤·½Ðλ¨ÆÔ£¬É軨ÆԵĿíABΪx£¨m£©£¬Ãæ»ýΪy£¨m2£©£®
£¨1£©ÇóyÓëxµÄº¯Êý¹Øϵʽ£¬²¢Ð´³öxµÄÈ¡Öµ·¶Î§£»
£¨2£©Èç¹ûҪΧÃæ»ýΪ45m2µÄ»¨ÆÔ£¬AB³¤¶ÈÊǶàÉÙ£¿
£¨3£©ÄÜΧ³ÉÃæ»ýΪ50m2µÄ»¨ÆÔÂð£¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÈôÁ½¸ö¶à±ßÐεıßÊýÖ®±ÈÊÇ1£º2£¬ÄڽǺͶÈÊýÖ®ºÍΪ1440¡ã£¬ÇóÕâÁ½¸ö¶à±ßÐεıßÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬CB¡ÍAB£¬DA¡ÍAB£¬´¹×ã·Ö±ðÊÇA¡¢B£¬AB=BC£¬EÊÇABÖе㣬CE¡ÍDB£¬CE½»BDÓÚµãO£®ÏÂÁнáÂÛ£º¢ÙBE=AD£»¢ÚAC´¹Ö±Æ½·ÖDE£»¢Û¡ÏDBC=¡ÏDCB£»¢Ü¡ÏCED=¡ÏDBC£»¢ÝBC=CD£®ÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÛB£®¢Ù¢Û¢ÝC£®¢Ù¢Ú¢ÜD£®¢Ú¢Û¢Ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$£¨{\frac{1}{a-b}+\frac{1}{b+a}}£©$¡Â$\frac{ab}{a+b}$£®ÆäÖÐa=$\sqrt{2}$+1£¬b=1-$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸