分析 (1)先表示出BP,根据PC=BC-BP,可得出答案;
(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.
(3)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;
解答 解:(1)BP=2t,则PC=BC-BP=6-2t;
故答案为(6-2t)cm.
(2)当t=1时,BP=CQ=2×1=2厘米,
∵AB=8厘米,点D为AB的中点,
∴BD=4厘米.
又∵PC=BC-BP,BC=6厘米,
∴PC=6-2=4厘米,
∴PC=BD,
又∵AB=AC,
∴∠B=∠C,
在△BPD和△CQP中,
$\left\{\begin{array}{l}{BD=PC}\\{∠B=∠C}\\{BP=CQ}\end{array}\right.$,
∴△BPD≌△CQP(SAS);
③∵vP≠vQ,
∴BP≠CQ,
又∵△BPD≌△CPQ,∠B=∠C,
∴BP=PC=3cm,CQ=BD=4cm,
∴点P,点Q运动的时间t=$\frac{PB}{2}$=$\frac{3}{2}$秒,
∴VQ=$\frac{CQ}{t}$=$\frac{4}{\frac{3}{2}}$=$\frac{8}{3}$厘米/秒.
点评 此题考查了全等三角形的判定,主要运用了路程=速度×时间的公式,要求熟练运用全等三角形的判定和性质.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com