精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=AC,点P为△ABC所在平面内一点.
(1)当点P在BC边上,过点P分别作PD∥AC交AB于点D,PE∥AB交AC于点E,如图1.证明:AB=PD+PE;
(2)当点P在△ABC外部时,过点P分别作PD∥AC交AB于点D,PE∥AB交AC于点E,交BC于点F,请你在图2中画出相应的图形,并直接写出PD,PE,PF与AB满足的数量关系.(不必说明理由)
分析:(1)证平行四边形ADPE,推出PD=AE,PE=AD,根据等腰三角形性质推出∠B=∠C=∠DPB,推出DP=DB即可;
(2)PD,PE,PF与AB满足的数量关系是PE+PD-PF=AB,如图2中,PD=AE可证,EF=PE-PF=CE,即PE+PD-PF=AC=AB.
解答:(1)证明:PD∥AC,PE∥AB,
∴四边形ADPE是平行四边形,(2分)
∴PD=AE,AD=PE,(3分)
∵AB=AC,
∴∠B=∠C,
又∵∠DPB=∠C,
∴∠B=∠DPB,
∴DP=DB,(4分)
∴PD+PE=BD+AD=AB;    (5分)
(2)已知如图:(7分)
PE+PD-PF=AB  (9分)
点评:本题综合考查了平行四边形的性质和判定和等腰三角形的性质等知识点,关键是熟练地运用性质进行推理和证明,题目含有一定的规律性,难度不大,但题型较好.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案