分析 (1)因为点A(-1,0)、B(2,-3)都在一次函数和二次函数图象上,一次函数只有一个待定系数m,所以将A(-1,0)、B(2,-3)中任意一点的坐标代入y2=-x+m即可;二次函数y1=ax2+bx-3有两个待定系数a、b,所以需要A(-1,0)、B(2,-3)两点的坐标都代入y1=ax2+bx-3,用二元一次方程组解出a、b的值.
(2)直接观察图象中同一个横坐标对应的y1、y2的值,直接得到答案;
解答 解:(1)把A(-1,0)代入y2=-x+m得:0=-(-1)+m,
∴m=-1.
把A(-1,0)、B(2,-3)两点代入y1=ax2+bx-3得:
$\left\{\begin{array}{l}{a-b-3=0}\\{4a+2b-3=-3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=-2}\end{array}\right.$,
∴y2=x2-2x-3;
(2)∵y1=x2-2x-3=(x+1)(x-3),抛物线开口向上,
∴A(-1,0),B(2,-3)
∴当y1>y2时,-1<x<2;
(3)不存在直线AB下方的抛物线上的一点P,使△ABP的面积等于6,
理由如下,假设存在P点,作PC⊥x轴,交AB于C点,
如图,
设P点坐标为(a,a2-2a-3),C点坐标为(a,-a-1),
PC的长为-a-1-(a2-2a-3)=-a2+a+2,
S△ABP=$\frac{1}{2}$PC•(xB-xA)=6
即$\frac{1}{2}$(-a2+a+2)(2+1)=6,
解得a=2,a=-1,
P(2,-3)与B点重合,P点是(-1,0)与A点重合,
假设不成立,∴P点不存在.
点评 本题考查了直线与抛物线解析式的求法,抛物线的相关性质的运用.关键是熟练掌握抛物线顶点式与交点式与性质之间的联系.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com