精英家教网 > 初中数学 > 题目详情
20.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC$\frac{1}{2}$∠BAC.其中正确的结论(  )
A.2个B.3个C.4个D.5个

分析 根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.

解答 解:∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正确;
∵AD平分∠EAC,CD平分∠ACF,
∴∠DAC=$\frac{1}{2}$∠EAC,∠DCA=$\frac{1}{2}$∠ACF,
∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,
∴∠ADC=180°-(∠DAC+∠ACD)
=180°-$\frac{1}{2}$(∠EAC+∠ACF)
=180°-$\frac{1}{2}$(∠ABC+∠ACB+∠ABC+∠BAC)
=180°-$\frac{1}{2}$(180°-∠ABC)
=90°-$\frac{1}{2}$∠ABC,∴③正确;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,∠ADC=90°-$\frac{1}{2}$∠ABC,
∴∠ADB不等于∠CDB,∴④错误;
∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,
∴∠BAC=2∠BDC,∴⑤正确;
即正确的有4个,
故选C.

点评 本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.组成多项式1-x2+xy-y2-xy3的单项式分别是1,-x2,xy,-y2,-xy3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.著名数学家斐波那契曾研究一列数,被称为斐波那契数列(按照一定顺序排列的一列数称为数列),这个数列的第n个数为$\frac{1}{\sqrt{5}}$[($\frac{1+\sqrt{5}}{2}$)n-($\frac{1-\sqrt{5}}{2}$)n](n为正整数),例如这个数列的第8个数可以表示为$\frac{1}{\sqrt{5}}$[($\frac{1+\sqrt{5}}{2}$)8-($\frac{1-\sqrt{5}}{2}$)8].根据以上材料,写出并计算:
(1)这个数列的第1个数;
(2)这个数列的第2个数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,在△ABC纸片中,AB=BC,∠B=40°,点D,E分别在AB,BC边上,将该纸片沿直线DE折叠,点B恰好落在点C处,则∠ACD的度数为(  )
A.10°B.20°C.30°D.40°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.求下列函数中自变量x的取值范围:
(1)y=2x3+3x+1
(2)y=$\sqrt{7-2x}$
(3)y=$\sqrt{2x-3}$$+\sqrt{7-3x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算
(1)$\sqrt{{{({-3})}^2}}-\sqrt{4}$;                 
(2)$\sqrt{12}×\sqrt{2}÷\frac{6}{{\sqrt{6}}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.用适当的方法解下列方程:
(1)(3x-2)2=(2x-3)2
(2)已知x1和x2是方程x2-$\sqrt{6}x$-$\sqrt{2}$=0的两个解,则$\frac{1}{{x}_{1}}+\frac{1}{{x}_{2}}$的值为-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.某射击队从甲、乙、丙、丁四位选手中选拔一人参加市级比赛,在选拔赛中,每人射击10次,计算他们成绩的平均数(环)分别是8.2,8.0,8.2,8.0,方差分别为2.0,1.8,1.5,1.6,则最合适的人选是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,点E在AB上,AC=AD,BC=BD,图中全等三角形有(  )
A.2对B.3对C.4对D.5对

查看答案和解析>>

同步练习册答案