精英家教网 > 初中数学 > 题目详情
(2000•河南)如图,AB是⊙O的弦,AD是⊙O的切线,C为弧AB上任一点,∠ACB=108°,∠BAD=    度.
【答案】分析:分别过A、B作AE、BE交⊙O于E,根据圆内接四边形的性质可求∠AEB=180°-∠ACB=180°-108°=72°,又由弦切角定理可证∠BAD=∠AEB=72°.
解答:解:分别过A、B作AE、BE交⊙O于E,
则四边形ACBE是⊙O的内接四边形,
∴∠AEB=180°-∠ACB=180°-108°=72°,
∵AD是⊙O的切线,
∴∠BAD=∠AEB=72°.
故答案为:72.
点评:此题属较简单题目,解答此题的关键是作出圆周角∠AEB,利用圆内接四边形的性质及弦切角定理解答.
练习册系列答案
相关习题

科目:初中数学 来源:2000年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(2000•河南)如图,在直角坐标系内,点B、C在x轴的负半轴上,点A在y轴的负半轴上.以AC为直径的圆与AB的延长线交于点D,弧CD=弧AO,如果AB=10,AO>BO,且AO、BO是x的二次方程x2+kx+48=0的两个根.
(1)求点D的坐标;
(2)若点P在直径AC上,且AP=AC,判断点(-2,-10)是否在过D、P两点的直线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年河南省中考数学试卷(解析版) 题型:解答题

(2000•河南)如图,在直角坐标系内,点B、C在x轴的负半轴上,点A在y轴的负半轴上.以AC为直径的圆与AB的延长线交于点D,弧CD=弧AO,如果AB=10,AO>BO,且AO、BO是x的二次方程x2+kx+48=0的两个根.
(1)求点D的坐标;
(2)若点P在直径AC上,且AP=AC,判断点(-2,-10)是否在过D、P两点的直线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年河南省中考数学试卷(解析版) 题型:填空题

(2000•河南)如图,在△ABC中,点D在线段BC上,∠BAC=∠ADC,AC=8,BC=16,那么CD=   

查看答案和解析>>

科目:初中数学 来源:2000年河南省中考数学试卷(解析版) 题型:选择题

(2000•河南)如图,⊙O1与⊙O2相交于A、B.已知两圆的半径r1=10,r2=17,圆心距O1O2=21,公共弦AB等于( )

A.
B.16
C.
D.17

查看答案和解析>>

同步练习册答案