精英家教网 > 初中数学 > 题目详情
如图,网格中每个小正方形的边长均为1.在AB的左侧,分别以△ABC的三边为直径作三个半圆围成图中的阴影部分.
(1)图中△ABC是什么特殊三角形?
(2)求图中阴影部分的面积;
(3)作出阴影部分关于AB所在直线的对称图形.

【答案】分析:(1)根据轴对称的知识可得,△ABC是等腰直角三角形;
(2)先求以AC,BC,AB为直径的半圆面积分别为S1,S2,S3,再求S阴影=S1+S2+S△ABC-S3即可;
(3)以AB为对称轴,作图即可.
解答:解:(1)∵四边形ADCE时正方形,
∴∠DAC=45°,
同理∠CBA=45°,
∴△ABC是等腰直角三角形;(2分)

(2)设以AC,BC,AB为直径的半圆面积分别为S1,S2,S3
解法1:在等腰直角三角形ABC中,
∵AB=8,由勾股定理,可得AC=BC=4
∴S阴影=S1+S2+S△ABC-S3(3分)
=π(22+π(22+×(42-π×42
=16.(5分)
解法2:S阴影=S1+S2+S△ABC-S3(3分)
=π(2+π(2+S△ABC-π(2
=π(AC2+BC2-AB2)+S△ABC.(4分)
在Rt△ABC中,由勾股定理知,AC2+BC2=AB2
∴S阴影=S△ABC=×8×4=16.(5分)

(3)作图正确(如右图).(8分)
点评:本小题主要考查勾股定理、轴对称图形、中心对称图形的知识,考查动手操作、面积的计算及审美能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为
7
7
.最短路线有
7
7
条;
②与原点O的“出租车距离”等于30的路口共有
120
120
个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有
780
780
条.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在18×13的网格中每个小正方形的边长都是1.△ABC与△A′B′精英家教网C′是关于点O为位似中心的位似图形,他们的顶点都在小正形的顶点上.
(1)在图中画出位似图形点O;(要保留画图痕迹)
(2)△ABC与△A′B′C′的位似比是
 

(3)请在此网格中,以点C为位似中心,再画一个△A1B1C,使它与△ABC的位似比等于2:1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在18×13的网格中每个小正方形的边长都是1.△ABC与△A′B′C′是关于点O为位似中心的位似图形,他们的顶点都在小正形的顶点上.
(1)在图中画出位似图形点O;(要保留画图痕迹)
(2)△ABC与△A′B′C′的位似比是______;
(3)请在此网格中,以点C为位似中心,再画一个△A1B1C,使它与△ABC的位似比等于2:1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为______.最短路线有______条;
②与原点O的“出租车距离”等于30的路口共有______个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有______条.

查看答案和解析>>

科目:初中数学 来源:2009年安徽省合肥市一中高一自主招生考试数学试卷(解析版) 题型:解答题

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为______.最短路线有______条;
②与原点O的“出租车距离”等于30的路口共有______个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有______条.

查看答案和解析>>

同步练习册答案