精英家教网 > 初中数学 > 题目详情
4.(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D.
(2)阅读下面的内容,并解决后面的问题:
如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.
解:∵AP、CP分别平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的结论得:$\left\{\begin{array}{l}{∠P+∠3=∠1+∠B①}\\{∠P+∠2=∠4+∠D②}\end{array}\right.$
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P=$\frac{1}{2}$(∠B+∠D)=26°.
①如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.
②在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.
③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.

分析 (1)根据三角形的内角和等于180°列式整理即可得证;
(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;
①表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;
②根据四边形的内角和等于360°可得(180°-∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°-∠3)+∠D=360°,然后整理即可得解;
③根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.

解答 解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180゜,
∴∠A+∠B+∠AOB=∠C+∠D+∠COD,
∵∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(2)①∠P=26゜.
∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4
由(1)的结论得:∠PAD+∠P=∠PCD+∠D ①,∠PAB+∠P=∠PCB+∠B ②,
∵∠PAB=∠1,∠1=∠2,
∴∠PAB=∠2,
∴∠2+∠P=∠3+∠B  ③,
①+③得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,即2∠P+180°=∠B+∠D+180°,
∴∠P=$\frac{1}{2}($∠B+∠D )=26°.

②如图4,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴(180°-2∠1)+∠B=(180°-2∠4)+∠D,
在四边形APCB中,(180°-∠1)+∠P+∠4+∠B=360°,
在四边形APCD中,∠2+∠P+(180°-∠3)+∠D=360°,
∴2∠P+∠B+∠D=360°,
∴∠P=180°-$\frac{1}{2}$(∠B+∠D);

③如图5,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∵(∠1+∠2)+∠B=(180°-2∠3)+∠D,
∠2+∠P=(180°-∠3)+∠D,
∴2∠P=180°+∠D+∠B,
∴∠P=90°+$\frac{1}{2}$(∠B+∠D).

点评 本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8字形”的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.找出以如图形变化的规律,则第101个图形中黑色正方形的数量是(  )
A.149B.150C.151D.152

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读下列解题过程,并按要求回答:
化简:$\frac{x-3}{{x}^{2}-1}$+$\frac{2}{1-x}$=$\frac{x-3}{{x}^{2}-1}$-$\frac{2}{x-1}$…①
=$\frac{x-3}{(x+1)(x-1)}$-$\frac{2(x+1)}{(x-1)(x+1)}$…②
=$\frac{x-3-2x+2}{(x+1)(x-1)}$…③
=$\frac{-x-1}{(x+1)(x-1)}$…④
=-$\frac{1}{x-1}$…⑤
(1)上述计算过程在第几步出现错误,并指出错误原因;
(2)请书写正确的化简过程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,AB=AC,BD、CE是腰AB、AC上的高,交于点O.
(1)求证:OB=OC.
(2)若∠ABC=65°,求∠COD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,则∠A+∠B+∠C+∠D+∠E的度数是180°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,求∠A+∠B+∠C+∠D+∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:如图,AD∥BC,AD=BC,E、F是四边形ABCD的对角线AC上的两点,并且AE=CF,
(1)求证:△AFD≌△CEB; 
(2)试判断EB与DF的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.观察下面的几个式子:

(1)根据上面的规律第5个式子为:3×(12+22+32+42+52)=11(1+2+3+4+5);
(2)根据上面的规律第n个式子为:3(12+22+32+…+n2)=(2n+1)(1+2+3+4+…+n);
(3)理由你发现的规律计算:12+32+52+…+392=33540.(写出最后得数)

查看答案和解析>>

同步练习册答案