【题目】已知:在梯形中,,,,点在对角线上(不与点重合),,的延长线与射线交于点,设的长为.
(1)如图,当时,求的长;
(2)设的长为,求关于的函数解析式,并直接写出定义域;
(3)当是等腰三角形时,求的长.
【答案】(1);(2)(且);(3)当是等腰三角形时,的长是6或.
【解析】
(1)过作,利用求出CH,根据勾股定理求出AH,再证明四边形是矩形,得到,再根据,求出,从而求出AD;
(2)根据题意证明,得到,故,在中,利用勾股定理得到故得到,即可得到关于的函数解析式;
(3)先证明,再分DF=DC、FC=DC、FC=FD三种情况,根据y与x的函数关系与三角函数的定义求解即可.
解:(1)过作,垂足为,
∵在中,,且,,
∴.
∵在中,,
∴
∴在中,,
∵,且,,
∴,
∴四边形是矩形,
∴
∵在中,,且
∴,得:
∴
(2)∵,
∴.
∵,
∴.
∵,
∴
∴,
∵,,
∴
∵在中,
∴,即(且)
(3)由,得:,
又有,
∴
∴当是等腰三角形时,也是等腰三角形
∴1°当时,不存在;
2°当时,得:,即
解得:(舍),
3°当时,在中由
得:,解得:(舍),
∴综上所述,当是等腰三角形时,的长是6或.
科目:初中数学 来源: 题型:
【题目】若二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -2 | -2 | 0 | 4 | … |
(1)求该二次函数的表达式;
(2)当y≥4时,求自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店将每件进价为80元的某种商店按每件110元出售,每天可售出100件.该商店想通过降低售价、增加销售量的方法来提高利润.经市场调查,发现这种商品每件每降价5元,每天的销售量可增加50件.设商品降价x元,每天销售该商品获得的利润为y元.
(1)求y(元)关于x(元)的函数关系式,并写出x的取值范围.
(2)求当x取何值时y最大?并求出y的最大值.
(3)若要是每天销售利润为3750元,且尽可能最大的向顾客让利,应将该商品降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点P(3,4),连接OP,将线段OP绕点O逆时针旋转90°得线段OP1.
(1)在图中作出线段OP1,并写出P1点的坐标;
(2)求点P在旋转过程中所绕过的路径长;
(3)求线段OP在旋转过程中所扫过的图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AM是⊙O直径,弦BC⊥AM,垂足为点N,弦CD交AM于点E,连按AB和BE.
(1)如图1,若CD⊥AB,垂足为点F,求证:∠BED=2∠BAM;
(2)如图2,在(1)的条件下,连接BD,若∠ABE=∠BDC,求证:AE=2CN;
(3)如图3,AB=CD,BE:CD=4:7,AE=11,求EM的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com