精英家教网 > 初中数学 > 题目详情

4比8小________;a比a+2小________,6比-6大________,6比-6小________.

答案:
解析:

4,2,12,-12


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、正在改造的人行道工地上,有两种铺设路面材料:一种是长为acm、宽为bcm的矩形板材(如图1),另一种是边长为ccm的正方形地砖(如图2).
(1)用多少块如图2所示的正方形地砖能拼出一个新的正方形?(只要写出一个符合条件的答案即可),并写出新正方形的面积;
(2)现用如图1所示的四块矩形板材铺成一个大矩形(如图3)或大正方形(如图4),中间分别空出一个小矩形和一个小正方形.
①试比较中间的小矩形和中间的小正方形的面积哪个大?大多少?
②如图4,已知大正方形的边长比中间小正方形的边长多20cm,面积大3200cm2.如果选用如图2所示的正方形地砖(边长为20cm)铺设图4中间的小正方形部分,那么能否做到不用切割地砖就可直接密铺(缝隙忽略不计)呢?若能,请求出密铺所需地砖的块数;若不能,至少要切割几块如图2的地砖?

查看答案和解析>>

科目:初中数学 来源:黄冈难点课课练八年级数学下册(北师大版) 题型:044

有若干件产品有大小两种箱子包装.每只大箱装满是12件,每只小箱装满是8件.下列三种包装方案中每只箱子必须装满.

方案一:产品的一半用大箱装,一半用小箱装;

方案二:产品的用大箱装,其余用小箱装;

方案三:产品的用大箱装,其余用小箱装,那么比“方案一”可少用5只箱子.

(1)求产品的件数;

(2)如果每只大箱的包装费比每只小箱子的包装费高k%,试确定选择哪种包装方案能使包装费用最低.

查看答案和解析>>

科目:初中数学 来源: 题型:

(6分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:

【小题1】(1)根据上面多面体模型,完成表格中的空格:
多面体
顶点数(V)
面数(F)
棱数(E)
四面体
4
4
6
长方体
8
6
12
正八面体
6
8
12
正十二面体
 
 
 
【小题2】(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是       
【小题3】(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是       
【小题4】(4)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,x+y=       

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:通过学习三角函数,我们知道在直角三角形中,一个锐角的大小,与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。类似地,可以在等腰三角形中,建立边角之间的联系。我们定义:等腰三角形中底边长与腰长的比叫做顶角正对(sad)。如图1,在⊿ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=。容易知道一个角的大小,与这个角的正对值也是相互唯一确定的。根据上述角的正对定义,解下列问题:

【小题1】计算:sad60°= ▲  
【小题2】对于0°<A<90°,∠A的正对值sadA的取值范围是 ▲  
【小题3】如图2,已知△DEF中,∠E=90°,cosD=,试求sadD的值。

查看答案和解析>>

科目:初中数学 来源:2012届福建永安九年级学业质量检测考试数学试卷(带解析) 题型:解答题

阅读理解:通过学习三角函数,我们知道在直角三角形中,一个锐角的大小,与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。类似地,可以在等腰三角形中,建立边角之间的联系。我们定义:等腰三角形中底边长与腰长的比叫做顶角正对(sad)。如图1,在⊿ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=。容易知道一个角的大小,与这个角的正对值也是相互唯一确定的。根据上述角的正对定义,解下列问题:

【小题1】计算:sad60°= ▲  
【小题2】对于0°<A<90°,∠A的正对值sadA的取值范围是 ▲  
【小题3】如图2,已知△DEF中,∠E=90°,cosD=,试求sadD的值。

查看答案和解析>>

同步练习册答案