【题目】如图,矩形纸片,,,点在边上,将沿折叠,点落在点处,、分别交于点、,且,则的值为( )
A.B.C.D.
【答案】C
【解析】
根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌AOBP(AAS)根据全等三角形的性质可得出0E=OB、EF=BP,设EF=x,则BP=x、DF=4-x、BF=PC=3-x,进而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.
解:∵矩形纸片,点在边上,将沿折叠,点落在点处,
根据折叠性质,可得:△DCP≌△DEP,
∴.DC=DE=4,CP=EP,
在△OEF和△OBP中
∴△OEF≌△OBP(AAS)
∴ОE=OB,EF=ВР.
设EF=x,则BP=x,DF=DE-EF=4-X,
又∵BF=OB+OF=OE+OP=PE=PC,РС=ВC-BP=3-x,
∴AF=AB-BF=1+x.
在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4-x)2
解得:x=
∴DF=4-x=
∴cos∠ADF=
故选:C.
科目:初中数学 来源: 题型:
【题目】(2016广西柳州市)如图,AB为△ABC外接圆⊙O的直径,点P是线段CA延长线上一点,点E在圆上且满足=PAPC,连接CE,AE,OE,OE交CA于点D.
(1)求证:△PAE∽△PEC;
(2)求证:PE为⊙O的切线;
(3)若∠B=30°,AP=AC,求证:DO=DP.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道平行四边形有很多性质.
现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
结论1:B′D∥AC;
结论2:△AB′C与ABCD重叠部分的图形是等腰三角形.
……
请利用图1证明结论1或结论2(只需证明一个结论).
(应用与探究)在ABCD中,已知∠B=30°,将△ABC沿AC翻折至△AB′C,连结B′D.
(1)如图1,若,则∠ACB= °,BC= ;
(2)如图2,,BC=1,AB′与边CD相交于点E,求△AEC的面积;
(3)已知,当BC长为多少时,是△AB′D直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形OBCD中,OB=1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90°,得到菱形OB′C′D′视为一次旋转,则菱形旋转45次后点C的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,对角线AC,BD交于点O,E是边AD上的一个动点(与点A,D不重合),连接EO并延长,交BC于点F,连接BE,DF.下列说法:
① 对于任意的点E,四边形BEDF都是平行四边形;
② 当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形;
③ 当AB<AD时,至少存在一个点E,使得是四边形BEDF是菱形;
④ 当∠ADB=45°时,至少存在一个点E,使得是四边形BEDF是正方形.
所有正确说法的序号是:_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形台球桌面ABCD上有两个球P,Q.PQ∥AB,球P连续撞击台球桌边AB,BC反射后,撞到球Q.已知点M,N是球在AB,BC边的撞击点,PQ=4,∠MPQ=30,且点P到AB边的距离为3,则四边形PMNQ的周长为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线G:有最低点。
(1)求二次函数的最小值(用含m的式子表示);
(2)将抛物线G向右平移m个单位得到抛物线G1。经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;
(3)记(2)所求的函数为H,抛物线G与函数H的图像交于点P,结合图像,求点P的纵坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有若干个仅颜色不同的红球和黑球,现往一个不透明的袋子里装进2个红球和3个黑球.
(1)随机摸出一个球是黑球的概率为 ;若先从袋子里取出m个红球(不放回),再从袋子里随机摸出一个球,将“摸到黑球”记为事件A.若事件A为必然事件,则m= ;
(2)若先从袋子里摸出一个球,放回后再摸出一个球,用列表法或画树状图法求出两次摸出的球颜色不同的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com