精英家教网 > 初中数学 > 题目详情
如图,△ABC是等边三角形,D是AC的中点,F为边AB上一动点,AF=nBF,E为直线BC上一点,且∠EDF=120°.
 
(1)如图1,当n=2时,求
CE
CD
=
1
3
1
3

(2)如图2,当n=
1
3
时,求证:CD=2CE;
(3)如图3,过点D作DM⊥BC于M,当
n=3
n=3
时,C点为线段EM的中点.
分析:(1)过D作DG∥BC交AB于G,则DG为△ABC的中位线,根据等边三角形的性质得∠ACB=∠ABC=60°,由DG∥BC,得∠FGD=120°,∠GDC=120°,△AGD为等边三角形,而∠EDF=120°,得∠GDF=∠CDE,易证得△GDF∽△CDE,所以FG:CE=DG:DC,即CE:DC=FG:DG=FG:AG,当AF=2BF,设BF=x,AF=2x,则AB=3x,AG=
3
2
x,FG=
3
2
x-x=
1
2
x,即可得到CE:DC=1:3.
(2)由(1)得CE:DC=FG:AG,当AF=
1
3
BF,设BF=3x,AF=x,则AB=4x,AG=2x,GF=x,即可得到结论;
(3)DM⊥BC,则∠MDC=30°得MC=
1
2
DC,当C点为线段EM的中点,则有CE=
1
2
DC,由前面的结论CE:DC=FG:AG得到FG=
1
2
AG,即可得到AF=3BF.
解答:(1)解:过D作DG∥BC交AB于G,如图1,
∵D是AC的中点,
∴DG为△ABC的中位线,
∵△ABC是等边三角形,
∴∠ACB=∠ABC=60°,
∴∠DCE=120°,
又∵DG∥BC,
∴∠FGD=120°,∠GDC=120°,△AGD为等边三角形,
而∠EDF=120°,
∴∠GDF=∠CDE,
∴△GDF∽△CDE,
∴FG:CE=DG:DC,即CE:DC=FG:DG,
而DG=AG=BG,AF=2BF,
设BF=x,AF=2x,则AB=3x,AG=
3
2
x,FG=
3
2
x-x=
1
2
x,
∴CE:DC=FG:DG=FG:AG=
1
2
x:
3
2
x=1:3.
故答案为
1
3


(2)证明:过D作DG∥BC交AB于G,如图2,当n=
1
3
时,
则DG为△ABC的中位线,
同(1)一样可证得△GDF∽△CDE,
∴FG:CE=DG:DC,即CE:DC=FG:DG,
而AF=
1
3
BF,设BF=3x,AF=x,则AB=4x,AG=2x,GF=x,
∴CE:DC=FG:AG=x:2x,
∴CD=2CE;

(3)解:过D作DG∥AB交BC于G,如图3,
由前面可得CE:DC=FG:AG;
∵DM⊥BC,
∴∠MDC=30°,
∴MC=
1
2
DC,
而C点为线段EM的中点,
∴CE=
1
2
DC,
∴FG=
1
2
AG,
∴FG=
1
2
BG,即F为BG的中点,F为AB的四等分点,
∴AF=3BF,
故答案为n=3.
点评:本题考查了等边三角形的性质:等边三角形三边相等;三个角都等于60°;也考查了相似三角形的判定与性质以及含30度的直角三角形三边的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF精英家教网∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,将△ABD绕点A点逆时针方向旋转后到达△ACE的位置,那么旋转角的度数是
60°
60°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

同步练习册答案