精英家教网 > 初中数学 > 题目详情
小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作:

请根据图中给出的信息,解答下列问题:
(1)放入一个小球量筒中水面升高______cm;
(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);
(3)量筒中至少放入几个小球时有水溢出?
(4)根据上述(2)(3)小题的情况,为了不使量筒中的水溢出,请根据实际确定自变量x的取值范围,并在图中画出自变量x在这一取值范围内水面高度y与小球个数x之间的一次函数关系的图象.
(1)放入一个小球量桶中水面升高为:(36-30)÷3=2cm;

(2)放入小球x(个)后,量桶中水面的高度为:2x+30,
则y与x的一次函数关系式为y=2x+30;

(3)∵(49-30)÷2=9.5,
∴至少放入10个球时,才会有水溢出;

(4)自变量x的取值范为:0≤x≤9的整数,
画出自变量x在这一取值范围内水面高度y与小球个数x之间的一次函数关系的图象,
如图所示:

故答案为:2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,…按如图所示放置,点A1,A2,A3,…在直线y=kx+b上,C1,C2,C3,…在x轴上,已知B1(1,1),B2(3,2),则B4的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲.乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:
(1)线段CD表示轿车在途中停留了______h;
(2)求线段DE对应的函数解析式;
(3)求轿车从甲地出发后经过多长时间追上货车.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点A(-4,0),B(2,0)是xOy平面上两定点,C是y=-
1
2
x+2的图象上的动点,则满足上述条件的直角三角形ABC可以画出(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

直线y=
2
3
x+2与两坐标轴围成的三角形的面积是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一辆客车从甲地开往乙地,一辆出租车从地开往甲地,两车同时出发,客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图12所示:
(1)根据图象,求出y1y2,关于x的函数关系式.
(2)若设两车间的距离为(km),请写出S关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形OABC的顶点B的坐标为B(8,7),动点P从原点O出发,以每秒2个单位的速度沿折线OA-AB运动,到点B时停止,同时,动点Q从点C出发,以每秒1个单位的速度在线段CO上运动,当一个点停止时,另一个点也随之而停止.在运动过程中,当线段PQ恰好经过点M(3,2)时,运动时间t的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-
3
3
x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O按顺时针方向旋转α角(0°<α<360°),可得△COD.

(1)求点A,B的坐标;
(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE△ABO;
(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;
(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连结AB.如果点P在直线y=x+1上,且点P到直线AB的距离大于或等于1,那么称点P是线段AB的“疏远点”.
(1)判断点C(
5
2
7
2
)是否是线段AB的“疏远点”,并说明理由;
(2)若点Q(m,n)是线段AB的“疏远点”,求m的取值范围.

查看答案和解析>>

同步练习册答案