【题目】解下列方程:
(1)
(2)
(3)
【答案】(1)x1=-3,x2=5;(2)x1=3,x2=;(3)x1=,x2=
【解析】
(1)利用因式分解法求出x的值即可;
(2)先移项,利用平方差公式将等式左边因式分解可解方程;
(3)利用公式法求出x的值即可.
(1)x22x15=0,
(x+3)(x-5)=0,
x+3=0,或x-5=0,
解得x1=-3,x2=5;
(2)(x+1)2=4(x1)2
(x+1)24(x1)2=0,
(x+1)2[2(x1)]2=0,
(x+1)2(2x2)2=0,
(x+12x+2)(x+1+2x2)=0,
(x+3)(3x1)=0,
x1=3,x2=;
(3),
∵a=1,b=-3,c=1,
则△=(-3)24×1×1=5>0,
∴x==,
∴x1=,x2=
科目:初中数学 来源: 题型:
【题目】如图,斜坡AB长10米,按图中的直角坐标系可用y=x+5表示,点A,B分别在x轴和y轴上.在坡上的A处有喷灌设备,喷出的水柱呈抛物线形落到B处,抛物线可用y=x2+bx+c表示.
(1)求抛物线的函数关系式(不必写自变量取值范围);
(2)求水柱离坡面AB的最大高度;
(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,
且∠ABM=∠BAM,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场要经营一种新上市的文具,进价为元件.试营销阶段发现:当销售单价是元时,每天的销售量为件;销售单价每上涨元,每天的销售量就减少件.
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式.
(2)当销售单价定为多少元时,该文具每天的销售利润最大?最大利润为多少元?
(3)商场的营销部结合上述情况,提出了,两种营销方案:
方案:该文具的销售单价高于进价,但不超过元;
方案:每天销售量不少于件,且每件文具的利润至少为元.
请比较哪种方案的最大利润更高,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:
(1)他们都行驶了18千米;
(2)甲在途中停留了0.5小时;
(3)乙比甲晚出发了0.5小时;
(4)相遇后,甲的速度小于乙的速度;
(5)甲、乙两人同时到达目的地
其中符合图象描述的说法有( )
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出100千克.
小强:如果以12元/千克的价格销售,那么每天可售出80千克.
小红:通过调查验证,我发现每天的销售量(千克)与销售单价(元)之间存在一次函数关系.
小强:我发现每天的销售量在70千克至100千克之间.
那么当销售单价为何值时,该超市销售这种水果每天获取的利润为320元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=﹣x2+bx+c(其中b,c是常数)
(1)四位同学在研究此函数时,甲发现当x=0时,y=5;乙发现函数的最大值为9;丙发现函数图象的对称轴是直线x=2;丁发现4是方程﹣x2+bx+c=0的一个根.已知这四位同学中只有一位发现的结论是错误的,请直接写出错误的那个人是谁,并求出此函数表达式;
(2)在(1)的条件下,函数y=﹣x2+bx+c的图象顶点为A,与x轴正半轴交点为B,与y轴的交点为C,若将该图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)若c=b2,当﹣2≤x≤0时,函数y=﹣x2+bx+c的最大值为5,求b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴交于两点,与轴交于点.点在函数图象上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.
(1)求的值;
(2)如图①,连接, 线段上的点关于直线的对称点F'恰好在线段BE上,求点的坐标;
(3)如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:直线右侧的抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:直线y=x﹣3与x轴、y轴分别交于点A、B,抛物线y=x2+bx+c经过点A、B,且交x轴于点C.
(1)求抛物线的解析式;
(2)点P为抛物线上一点,且点P在AB的下方,设点P的横坐标为m.
①试求当m为何值时,△PAB的面积最大;
②当△PAB的面积最大时,过点P作x轴的垂线PD,垂足为点D,问在直线PD上否存在点Q,使△QBC为直角三角形?若存在,直接写出符合条件的Q的坐标若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com