精英家教网 > 初中数学 > 题目详情
在梯形ABCD中,AD∥BC,∠ABC=90°,且AD=1,AB=2,tan∠DCB=2,对角线AC和BD相交于点O.在等腰直角三角形纸片EBF中,∠EBF=90°,EB=FB.把梯形ABCD固定不动,将三角形纸片EBF绕点B旋转.
(1)如图1,当三角形纸片EBF绕点B旋转到使一边BF与梯形ABCD的边BC在同一条直线上时,线段AF与CE的位置关系是
 
,数量关系是
 

(2)将图1中的三角形纸片EBF绕点B逆时针继续旋转,旋转角为α(0°<α<90°),请你在图2 中画出图形,并判断(1)中的两个结论是否发生变化,写出你的猜想并加以证明;
(3)将图1中的三角形纸片EBF绕点B逆时针旋转到一边BF恰好落在线段BO上时,三角形纸片EBF的另一边EF与BC交于点M,请你在图3中画出图形.
①判断(1)中的两个结论是否发生变化,直接写出你的猜想,不必证明;
②若OF=
5
6
,求BM的长. 
精英家教网
分析:(1)根据条件证明△ABF≌△CBE,可得AF=CE,再利用对应角相等,互余关系证明AF⊥CE;
(2)(1)中的两个结论没有发生变化,利用同样的方法证明△ABF≌△CBE,从而可得AF=CE,利用角的相等关系,互余关系可证AF⊥CE;
(3)根据AD∥BC,可证△AOD∽△COB,在Rt△DAB中,由勾股定理求BD,利用相似比求BO,已知OF=
5
6
,由BF=BO-OF求BF,根据△BEF为等腰直角三角形,得BE=BF,∠3=∠OAB=45°,利用互余关系证明∠1=∠2,从而可证△BME∽△BOA,利用相似比求BM.
解答:解:(1)垂直,相等;

(2)猜想:(1)中的两个结论没有发生变化.
证明:如图2,过D作DG⊥BC于G.
精英家教网∵∠ABC=90°,
∴DG∥AB.
∵AD∥BC,
∴四边形ABGD为矩形.
∴AB=DG=2,AD=BG=1.
∵tan∠DCB=
DG
CG
=2,
∴CG=
DG
2
=
2
2
=1.
∴CB=AB=2.
∵∠ABC=∠EBF=90°,
∴∠ABC+∠ABE=∠EBF+∠ABE.
∴∠CBE=∠ABF.
在△ABF和△CBE中,
AB=CB
∠ABF=∠CBE
BF=BE

∴△ABF≌△CBE.
∴AF=CE,∠2=∠1.
∵∠1+∠3=90°,∠3=∠4,
∴∠2+∠4=90°.
∴∠5=90°.
AF⊥CE;

(3)①猜想:(1)中的两个结论没有发生变化.
②如图,∵AD∥BC,
∴△AOD∽△COB.
AD
CB
=
OD
OB

∵AD=1,BC=2,
OD
OB
=
1
2

在Rt△DAB中,BD=
AB2+AD2
=
4+1
=
5
精英家教网
∴OB=2OD=
2
3
BD=
2
5
3

∵OF=
5
6

∴BF=BE=
5
2

∵∠1+∠FBM=90°,∠2+∠FBM=90°,
∴∠1=∠2.
又∵∠3=∠OAB=45°,
∴△BME∽△BOA.
BM
BO
=
BE
BA

BM
2
5
3
=
5
2
2

∴BM=
5
6
点评:本题考查了旋转的性质,等腰直角三角形的性质,全等三角形、相似三角形的判定与性质.关键是运用旋转前后,图形的对应边相等,对应角相等的性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,则∠ADC=
140°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AB∥CD,E是AB边上的点,给出下面三个论断:①AD=BC;②DE=CE;③AE=BE.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断作为结论,填入“求证”栏中,使之成为一个正确的命题,并证明之.
已知:如图,在梯形ABCD中,AB∥CD,E是AB边上的点,
AD=BC,AE=BE
AD=BC,AE=BE

求证:
DE=CE
DE=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.
(1)试说明∠ABD=∠CBD.
(2)若∠C=2∠E,试说明AB=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,则∠BDC的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,点P是下底BC边上的一个动点,从B向C以2cm/s的速度运动,到达点C时停止运动,设运动的时间为t(s).
(1)求BC的长;
(2)当t为何值时,四边形APCD是等腰梯形;
(3)当t为何值时,以A、B、P为顶点的三角形是等腰三角形.

查看答案和解析>>

同步练习册答案