精英家教网 > 初中数学 > 题目详情
已知:函数y=-
1
4
x2+x+a的图象的最高点在x轴上.
(1)求a;
(2)如图所示,设二次函数y=-
1
4
x2+x+a图象与y轴的交点为A,顶点为B,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点C关于直线PB的对称点为M,试探索点M是否在抛物线y=-
1
4
x2+x+a上?若在抛物线上,求出M点的坐标;若不在,请说明理由.
(1)依题意有△=1+a=0,
解得a=-1;

(2)设P为二次函数图象上的一点,过点P作PC⊥x轴于点C1
∵y=-
1
4
x2+x-1顶点为B(-2,0),图象与y轴的交点坐标为A(0,-1),
∵以PB为直径的圆与直线AB相切于点B,
∴PB⊥AB,则∠PBC1=∠BAO
∴Rt△PC1BRt△BOA
PC1
OB
=
BC1
AO
,故PC1=2BC1
设P点的坐标为(x,y),
∵∠ABO是锐角,∠PBA是直角,
∴∠PBO是钝角,
∴x>2
∴BC1=x-2,PC1=2x-4,
即y=4-2x,
∴P点的坐标为(x,4-2x)
∵点P在二次函数y=-
1
4
x2+x+1的图象上,
∴4-2x=-
1
4
x2+x-1,
解得:x1=-2,x2=10
∵x>2,
∴x=10,
∴P点的坐标为:(10,-16);

(3)点M不在抛物线y=-
1
4
x2+x+a上,
由(2)知:C1为圆与x轴的另一交点,连接CM,CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE,则CM⊥PB,且CQ=MQ,
∴QEMD,QE=
1
2
MD,QE⊥CE
∵CM⊥PB,QE⊥CE,PC⊥x轴
∴∠QCE=∠EQB=∠CPB
∴tan∠QCE=tan∠EQB=tan∠CPB=
1
2

CE=2QE=2×2BE=4BE,
又∵CB=8,
故BE=
8
5
,QE=
16
5

∴Q点的坐标为(
18
5
,-
16
5

可求得M点的坐标为(
14
5
,-
32
5

∵-
1
4
×(
14
5
2+
14
5
-1=-
144
25
≠-
32
5

∴C点关于直线PB的对称点M不在抛物线y=-
1
4
x2+x+a上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=ax2+bx+c的顶点为C(1,0),且与直线l:y=x+m交y轴于同一点B(0,1),与直线l交于另一点A,D为抛物线的对称轴与直线l的交点,P为线段AB上的一动点(不与点A、B重合),过点P作y轴的平行线交抛物线于点E.
(1)求抛物线和直线l的函数解析式,及另一交点A的坐标;
(2)求△ABE的最大面积是多少?
(3)问是否存在这样的点P,使四边形PECD为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连接MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO.
(1)试直接写出点D的坐标;
(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连接OP.若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标;
(3)试问在(2)抛物线的对称轴上是否存在一点T,使得
|TO-TB|的值最大?若存在,则求出点T点的坐标;若不存在,则说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
1
2
x2+mx+n
与x轴交于不同的两点A(x1,0),B(x2,0),点A在点B的左边,抛物线与y轴交于点C,若A,B两点位于y轴异侧,且tan∠CAO=tan∠BCO=
1
3
,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2(a≥1)的图象上两点A,B的横坐标分别为-1,2,O是坐标原点,如果△AOB是直角三角形,则△AOB的周长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知A1,A2,A3,…,A2006是x轴上的点,且OA1=A1A2=A2A3=…=A2005A2006=1,分别过点A1,A2,A3,…,A2006作x轴的垂线交二次函数y=x2(x≥0)的图象于点P1,P2,P3,…,P2006点,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…,依次进行下去,最后记△P2005B2005P2006的面积为S2006,则S2006-S2005=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

安庆迎江区农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的养圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长24米的墙,设计了如图一个矩形的养圈.
(1)请你求出张大伯设计的矩形养圈的面积.
(2)请你判断他的设计方案是否使矩形养圈的面积最大?如果不是最大,应怎样设计?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:0<a<b<c,实数x、y满足2x+2y=a+b+c,2xy=ac,且x<y.求证:0<x<a,b<y<c.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AD=12,AB=8,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.
(1)设CP=x,BE=y,试写出y关于x的函数关系式;
(2)当点P在什么位置时,线段BE最长?

查看答案和解析>>

同步练习册答案