精英家教网 > 初中数学 > 题目详情
4.解方程:3x2+2x-5=0.

分析 利用因式分解法解方程.

解答 解:(3x+5)(x-1)=0,
3x+5=0或x-1=0,
所以x1=-$\frac{5}{3}$,x2=1.

点评 本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.如果单项式-2x4a-by3与$\frac{1}{2}$x2ya+b是同类项,这两个单项式的积是(  )
A.x4y6B.-x2y3C.$-\frac{3}{2}$x2y3D.-x4y6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交与点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3
(1)求抛物线的解析式并配成顶点式(要求写出过程);
(2)求△ABD的面积;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.鹅岭公园是重庆最早的私家园林,前身为礼园,是国家级AAA旅游景区,园内有一瞰胜楼,登上高楼能欣赏到重庆的优美景色,周末小嘉同学游览鹅岭公园,如图,在A点处观察到毗胜楼楼底C的仰角为12°,楼顶D的仰角为13°,BC是一斜坡,测得点B与CD之间的水平距离BE=450米.BC的坡度i=8:15,则测得水平距离AE=1200m,BC的坡度i=8:15,则瞰胜楼的高度CD为(  )米.(参考数据:tan12°=0.2,tan13°=0.23)
A.34B.35C.36D.37

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在平面直角坐标系中,依下列步骤尺规作图,并保留作图痕迹:
步骤1:以点O为圆心,任意长为半径画弧,与x轴负半轴交于点A,与直线y=$\sqrt{3}$x交于点B(点B在第三象限):
步骤2:分别以点A,B为圆心,以大于$\frac{1}{2}$AB长为半径画弧,两弧交于点C.
则直线OC的函数解析式为(  )
A.y=$\frac{\sqrt{3}}{2}$xB.y=-$\frac{\sqrt{3}}{2}$xC.y=$\frac{\sqrt{3}}{3}$xD.y=-$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:抛物线有=-x2+bx+c经过A(-1,0)、B(5,0)两点,顶点为P.求:
(Ⅰ)求b,c的值;
(Ⅱ)求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,已知点C在线段AB上,点C所表示的数为m,则-m不可能是(  )
A.2B.$\frac{3}{2}$C.-1D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为$\widehat{AD}$的中点,连接DE,EB.
(1)求证:四边形BCDE是平行四边形;
(2)已知图中阴影部分面积为12π,求⊙O的半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.观察下列各式:
$\frac{{1}^{2}+1-1}{{1}^{2}+1}$=1-$\frac{1}{{1}^{2}+1}$=1-(1-$\frac{1}{2}$);
$\frac{{2}^{2}+2-1}{{2}^{2}+2}$=1-$\frac{1}{{2}^{2}+2}$=1-($\frac{1}{2}$-$\frac{1}{3}$);
$\frac{{3}^{2}+3-1}{{3}^{2}+3}$=1-$\frac{1}{{3}^{2}+3}$=1-($\frac{1}{3}$-$\frac{1}{4}$);

计算:$\frac{1}{2}$+$\frac{5}{{2}^{2}+2}$+$\frac{11}{{3}^{2}+3}$+…+$\frac{201{5}^{2}+2015-1}{201{5}^{2}+2015}$=2014$\frac{1}{2016}$.

查看答案和解析>>

同步练习册答案