精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的方程x2+ax+a﹣2=0

(1)若该方程的一个根为1,求a的值及该方程的另一根;

(2)求证:不论a取何实数,该方程都有两个不相等的实数根.

【答案】(1)(2)证明见解析

【解析】

试题分析:(1)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根;

(2)写出根的判别式,配方后得到完全平方式,进行解答.

试题解析:(1)将x=1代入方程x2+ax+a﹣2=0

得,1+a+a﹣2=0,

解得,a=

方程为x2+x﹣=0,

即2x2+x﹣3=0,

设另一根为x1,则1x1=﹣

x1=﹣

(2)∵△=a2﹣4(a﹣2)=a24a+8=a24a+4+4=(a﹣2)2+40,

不论a取何实数,该方程都有两个不相等的实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】洋洋有4张卡片写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:

(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?
(2)从中取出2张卡片,使这2张卡片上数字组成一个最大的数,如何抽取?最大的数是多少?
(3)将这4张卡片上的数字用学过的运算方法,使结果为24.写出运算式子(一种即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC边上的高,BE平分∠△ABC交AD于点E.若∠C=60°,∠BED=70°. 求∠ABC和∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE=BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=  度;

(2)设∠BAC=α,BCE=β.

①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;

②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一道题目是一个多项式加上多项式xy﹣3yz﹣2xz,某同学以为是减去这个多项式,因此计算得到的结果为2xy﹣3yz+4xz.请你改正他的错误,求出正确的答案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“比a的2倍大1的数”,列式表示是(
A.2(a+1)
B.2(a﹣1)
C.2a+1
D.2a﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC=13厘米,BC=10厘米,ADBC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.

(1)求AD的长;

(2)当PDC的面积为15平方厘米时,求t的值;

(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中如图,小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.

1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)

2)通过计算,你能找到题中数据与勾股数345的联系吗?试从中寻找求解决问的简便算法.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 问题与探索

问题情境:课堂上,老师让同学们以菱形纸片的剪拼为主题开展数学活动.如图(1),将一张菱形纸片ABCD(BAD>90°)沿对角线AC剪开,得到ABC和ACD.

操作发现:

(1)将图(1)中的ACD以点A为旋转中心,按逆时针方向旋转角α,使α=BAC,得到如图(2)所示的ACD,分别延长BC和DC交于点E,则四边形ACEC的形状是

(2)创新小组将图(1)中的ACD以点A为旋转中心,按逆时针方向旋转角α,使α=2BAC,得到如图(3)所示的ACD,连接DB、CC,得到四边形BCCD,发现它是矩形,请证明这个结论.

查看答案和解析>>

同步练习册答案