精英家教网 > 初中数学 > 题目详情
如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在直线AB上,且与点O的距离为6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移动,那么______秒种后⊙P与直线CD相切.
当点P在射线OA时⊙P与CD相切,如图,过P作PE⊥CD与E,
∴PE=1cm,
∵∠AOC=30°,
∴OP=2PE=2cm,
∴⊙P的圆心在直线AB上向右移动了(6-2)cm后与CD相切,
∴⊙P移动所用的时间=
6-2
1
=4(秒);
当点P在射线OB时⊙P与CD相切,如图,过P作PE⊥CD与F,
∴PF=1cm,
∵∠AOC=∠DOB=30°,
∴OP=2PF=2cm,
∴⊙P的圆心在直线AB上向右移动了(6+2)cm后与CD相切,
∴⊙P移动所用的时间=
6+2
1
=8(秒).
故答案为4或8.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图(1),AB是⊙O的直径,射线AT⊥AB,点P是射线AT上的一个动点(P与A不重合),PC与⊙O相切于C,过C作CE⊥AB于E,连接BC并延长BC交AT于点D,连接PB交CE于F.
(1)请你写出PA、PD之间的关系式,并说明理由;
(2)请你找出图中有哪些三角形的面积被PB分成两等分,并加以证明;
(3)设过A、C、D三点的圆的半径是R,当CF=
1
4
R时,求∠APC的度数,并在图(2)中作出点P.(要求尺规作图,不写作法,但要保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

点O到直线l的距离为5,如果以点O为圆心的圆上只有两点到直线l的距离为2,则该圆的半径r的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A、B、C三点在⊙O上,
AB
=
BC
,∠1=∠2.
(1)判断OA与BC的位置关系,并说明理由;
(2)求证:四边形OABC是菱形;
(3)过A作⊙O的切线交CB的延长线于P,且OA=4,求△APB的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图半径为R和r(R>r)的圆O1与圆O2相交,公切线AB与连心线的夹角为30°,则公切线AB的长为(  )
A.
1
2
(R-r)
B.
3
3
(R-r)
C.
3
(R-r)
D.2(R-r)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,BC切⊙O于点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
(2)求证:
BD
BE
=
CD
BC

(3)若BC=
3
2
AB,求tan∠CDF的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB、AC、ED分别切⊙O于点B、C、D,且AC⊥DE于E,BC的延长线交直线DE于点F.若BC=24,sin∠F=
3
5

(1)求EF的长;
(2)试判断直线AB与CD是否平行?若平行,给出证明;若不平行,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB=AC,以AB为直径的圆O交边BC于点D,过点D作DE⊥AC,垂足为点E.
(1)求证:DE是圆O的切线;
(2)如果∠BAC=120°,求证:DE=
1
4
BC.

查看答案和解析>>

同步练习册答案