精英家教网 > 初中数学 > 题目详情
25、如图1,已知:△ABC中,AB=AC,∠BAC=90°,AE是过A的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E.
(1)△ABD与△CAE全等吗?BD与AE、AD与CE相等吗?为什么?
(2)BD、DE、CE之间有什么样的等量关系(写出关系式即可)
(3)若直线AE绕A点旋转,如图2,其它条件不变,那么BD与DE、CE的关系如何?说明理由.
分析:(1)利用AAS判定△ABD≌△CAE,根据全等三角形的对应边相等可以求得BD=AE,AC=CE;
(2)因为BD=AE,AD=CE,AE=AD+DE=CE+DE所以BD=DE+CE;
(3)因为BD=AE,AD=CE,DE=AE+AD=BD+CE,所以BD=DE-CE.
解答:(1)解:BD=AE,AD=CE.
理由:∵BD⊥AE于D,CE⊥AE于E,∠BAC=90°,
∴∠BDA=∠AEC=90°,∠DBA+∠BAD=90°,∠BAD+∠EAC=90°,
∴∠DBA=∠EAC
∵AB=AC,
∴△ABD≌△CAE(AAS)
∴BD=AE,AD=CE;

(2)解:BD=DE+CE.
理由:∵BD=AE,AD=CE
∴AE=AD+DE=CE+DE
∴BD=DE+CE;

(3)解:BD=DE-CE.
证明:同(1)可证明△ABD≌△CAE(AAS)
∴BD=AE,AD=CE
∵DE=AE+AD=BD+CE
∴BD=DE-CE.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图1,已知线段AB和直线m,点A在直线m上,以AB为一边画等腰△ABC,且使点C在直线m上,这样的等腰三角形最多有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•翔安区模拟)(1)如图1,已知线段AB,请用直尺和圆规作出线段AB的垂直平分线(不写画法,保留作图痕迹);
(2)计算:(-1)0+2sin60°+
16
-|1-
3
|

(3)如图2,已知AB∥CD,直线MN交AB于M,交CD于N,ME平分∠AMN,NF平分∠DNM,求证:EM∥FN.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•梅州)如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.
(1)当△APC与△PBD的面积之和取最小值时,AP=
a
a
;(直接写结果)
(2)连接AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动面变化?请说明理由;
(3)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知线段AB=8,点C是AB上的一动点(不包括A、B),在AB同侧作两个等边三角形ACD和BCE,连DE,点P、F分别是DE和BE的中点,连接AF,分别交DC、CE于G、H.
(1)写出图中所有的相似三角形(除等边三角形ACD和BCE外);
(2)当点C在AB中点时,如图2,求CP的长及AG:GH:HF;
(3)点M、N是线段AB上两点,且AM=BN=2,当点C从点M向点N运动时,求点P所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.
(2)如图2,等腰Rt△ABC中,∠ACB=90°.直线DE经过△ABC内部,AD⊥DE于点D,BE⊥DE于点E,试猜想线段AD、BE、DE之间满足什么关系?证明你的结论.

查看答案和解析>>

同步练习册答案