【题目】某水果店销售某种水果,原来每箱售价元,每星期可卖箱.为了促销,该水果店决定降价销售.市场调查反映:每降价元,每星期可多卖箱.已知该水果每箱的进价是元,设该水果每箱售价元,每星期的销售量为箱.
求与之间的函数关系式;
当每箱售价定为多少元时,每星期的销售利润最大,最大利润多少元?
若该水果店销售这种水果每星期想要获得不低于元的利润,每星期至少要销售该水果多少箱?
【答案】(1)(2)每箱售价定为元时,每星期的销售利润最大,最大利润元(3)该网店每星期想要获得不低于元的利润,每星期至少要销售该水果箱
【解析】
(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.
(2))设每星期利润为W元,构建二次函数利用二次函数性质解决问题.
(3)列出不等式先求出售价的范围,再确定销售数量即可解决问题.
由题意可得:;设每星期利润为元,
,
∵,抛物线开口向下,
∴时,最大值,且,符合题意.
∴每箱售价定为元时,每星期的销售利润最大,最大利润元;由题意时,,
解得:,,
故时,,
当时,销售,
当时,销售,
故该网店每星期想要获得不低于元的利润,每星期至少要销售该水果箱.
科目:初中数学 来源: 题型:
【题目】学校在假期内对教室内的黑板进行整修,需在规定日期内完成,如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期15天;如果两组合作了10天,余下部分由乙组独做,正好在规定日期内完成.
(1)这项工程的规定时间是多少天?
(2)已知甲组每天的施工费用为500元,乙组每天的施工费用为300元,为了缩短工期在假期内尽快完成任务,学校最终决定该工程由甲、乙两组合做来完成,那么该工程施工费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.
(1)求证:△ABD≌△ACD.
(2)求∠ADE的度数.
(3)试猜想线段DE,AD,DC之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.
(1)当t=2时,求线段PQ的长度;
(2)当t为何值时,△PCQ的面积等于5cm2?
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的结论有 .(把你认为正确的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的图象经过点、,顶点为,与轴交于点.
求抛物线的解析式和顶点的坐标;
如图,为线段上一点,过点作轴平行线,交抛物线于点,当的面积最大时,求点的坐标;
如图,若点是直线上的动点,点、、所构成的三角形与相似,请直接写出所有点的坐标;
如图,过作轴于点,是轴上一动点,是线段上一点,若,则的最大值为________,最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.
(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是( )
A.AD∥BCB.∠DAC=∠EC.BC⊥DED.AD+BC=AE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABD和△ACE中,AB=AD,AC=AE,∠DAB=∠CAE=α,连接DC、BE.
(1)如图1,求证:DC=BE;
(2)如图2,DC,BE交于点F,用含α的式子表示∠AFE;
(3)如图3,过A作AG⊥DC于点G,式于的值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com