精英家教网 > 初中数学 > 题目详情
综合与探究:如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q。

(1)求点A,B,C的坐标。
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。
(3)当点P在线段EB上运动时,是否存在点 Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。
解:(1)当y=0时,,解得,
∵点B在点A的右侧,∴点A,B的坐标分别为:(-2,0),(8,0)。
当x=0时,,∴点C的坐标为(0,-4)。
(2)由菱形的对称性可知,点D的坐标为(0,4)。
设直线BD的解析式为,则,解得,
∴直线BD的解析式为
∵l⊥x轴,∴点M,Q的坐标分别是(m,),(m,
如图,当MQ=DC时,四边形CQMD是平行四边形。
,化简得:
解得,m1=0,(舍去)m2=4。
当m=4时,四边形CQMD是平行四边形,此时,四边形CQBM也是平行四边形。理由如下:
∵m=4,∴点P是OB中点。
∵l⊥x轴,∴l∥y轴。
∴△BPM∽△BOD。∴。∴BM=DM。
∵四边形CQMD是平行四边形,∴DMCQ。∴BMCQ。
∴四边形CQBM为平行四边形。
(3)抛物线上存在两个这样的点Q,分别是Q1(-2,0),Q2(6,-4)。

试题分析:(1)根据坐标轴上点的特点,可求点A,B,C的坐标。
(2)由菱形的对称性可知,点D的坐标,根据待定系数法可求直线BD的解析式,根据平行四边形的性质可得关于m的方程,求得m的值;再根据平行四边形的判定可得四边形CQBM的形状。
(3)分DQ⊥BD,BQ⊥BD两种情况讨论可求点Q的坐标:由B(8,0),D(0,4),Q(m,)应用勾股定理求出三边长,再由勾股定理分DQ⊥BD,BQ⊥BD两种情况列式求出m即可。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).

(1)求抛物线C1的解析式的一般形式;
(2)当m=2时,求h的值;
(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。

(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=x2+1的图象的顶点坐标是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将二次函数的图象向左平移1个单位,再向上平移2个单位后,所得图象的函数表达式是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,有下列结论:
,②,③,④ ,⑤
其中正确的个数有(    )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,抛物线轴的交点的个数是___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是
A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2

查看答案和解析>>

同步练习册答案