精英家教网 > 初中数学 > 题目详情
如图,已知AD∥BC,欲证△ABC≌△CDA,根据SAS知,需补充的一个条件
AD=CB
AD=CB
分析:已知AD∥BC,可得∠DAC=∠BCA,然后找到公共边AC,根据全等三角形的判定,只需找出AD=CB,便可根据SAS来判定三角形全等.
解答:解:∵AD∥BC,
∴∠DAC=∠BCA,
在△ABC和△CDA,
AC=CA
∠DAC=∠BCA
AD=CB

∴△ABC≌△CDA(SAS),
故答案为:AD=CB.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,则∠ABC=
68°
,∠C=
56°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD=BC.EC⊥AB.DF⊥AB,C.D为垂足,要使△AFD≌△BEC,还需添加一个条件.若以“ASA”为依据,则添加的条件是
∠A=∠B
∠A=∠B

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD=BC,AC=BD,∠DAC与∠CBD有什么关系?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD∥BC,AD平分∠CAE,试说明△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,则∠C=
56°
56°

查看答案和解析>>

同步练习册答案