精英家教网 > 初中数学 > 题目详情

【题目】某商场将某种商品的售价从原来的每件元经两次调价后调至每件元.

(1)若该商店两次调价的降价率相同,求这个降价率;

(2)经调查,该商品每降价元,即可多销售件.若该商品原来每月可销售件,那么两次调价后,每月可销售该商品多少件?

【答案】110%.(2700

【解析】

试题(1)设调价百分率为x,根据售价从原来每件40元经两次调价后调至每件32.4元,可列方程求解.

2)根据的条件从而求出多售的件数,从而得到两次调价后,每月可销售该商品数量.

试题解析:(1)设这种商品平均降价率是,依题意得:

解得:(舍去);故这个降价率为10%

2)降价后多销售的件数:,两次调价后,每月可销售该商品数量为:380+500=880(件).故两次调价后,每月可销售该商品880件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在大课间活动中,同学们积极参加体育锻炼,小明就本班同学我最喜爱的体育项目进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:

(1)该班共有_____名学生;

(2)补全条形统计图;

(3)在扇形统计图中,乒乓球部分所对应的圆心角度数为_____

(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.

(1)求抛物线的解析式;

(2)将OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;

(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足NBB1的面积是NDD1面积的2倍,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将沿着过中点的直线折叠,使点落在边上的处,称为第1次操作,折痕的距离记为,还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第2次操作,折痕的距离记为,按上述方法不断操作下去…经过第2020次操作后得到的折痕的距离记为,若,则的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是等边内一点, .将绕点按顺时针方向旋转,连接

(1)求证: 是等边三角形;

(2)当时,试判断的形状,并说明理由;

(3)探究:当为多少度时, 是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体(  )

A. 主视图改变,俯视图改变 B. 左视图改变,俯视图改变

C. 俯视图不变,左视图改变 D. 主视图不变,左视图不变

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.

(1)判断:一个内角为120°的菱形  等距四边形.(填不是”)

(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的等距四边形,画出相应的等距四边形,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为   端点均为非等距点的对角线长为  

(3)如图1,已知ABECDE都是等腰直角三角形,∠AEB=DEC=90°,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?这段话摘自《九章算术》.意思是说:如图,矩形城池ABCD,东边城墙AB9里,南边城墙AD7里,东门点E、南门点F分别是ABAD中点,EGABFHADEG15里,HG经过A点,则FH=(

A.1.2 B.1.5 C.1.05 D.1.02

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE已知BAC=30°,EFAB,垂足为F,连接DF

(1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形

查看答案和解析>>

同步练习册答案