精英家教网 > 初中数学 > 题目详情
如图,直角三角形ABC中,∠ACB=90°,∠B=36°,D是AB的中点,ED⊥AB交BC于E,连接CD,则∠CDE:∠ECD=
1:2
1:2
分析:根据D是AB的中点,利用直角三角形斜边上的中线等于斜边的一半,可证CD=DB,再利用等腰三角形的性质和三角形内角和定理可求出∠CDE和∠ECD度数,即可.
解答:解:∵∠ACB=90°,∠B=36°,D是AB的中点,
∴CD=DB,
∴∠ECD=∠B=36°,
∴∠CDB=180°-∠ECD-∠B=180°-36°-36°=108°,
∵ED⊥AB,
∴∠EDB=90°,
∠CDE=∠CDB-∠EDB=108°-90°=18°,
∠CDE:∠ECD=1:2.
故答案为1:2.
点评:此题主要考查学生对直角三角形斜边上的中线,等腰三角形的性质和三角形内角和定理的理解和掌握,此题难度不大,但综合性较强,是一道很典型的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直角三角形ABC中∠ACB=90°,CD是高,∠A=30°,AB=4.则BD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角三角形ABC的直角边AB=6,以AB为直径画半圆,若阴影部分的面积S1-S2=
π
2
,则BC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在直角三角形ABC的斜边AB上另作直角三角形ABD,并以AB为斜边,若BC=1,AC=m,AD=2,则BD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角三角形ACB中,CD是斜边AB上的中线,若AC=8cm,BC=6cm,那么△ACD与△BCD的周长差为
2
2
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角三角形ABC中,∠C=90°,P,E分别是边AB,BC上的点,D为△ABC外一点,DE⊥BC,DE=EC,BE=2EC,∠BDE=∠PEC,AD∥PE,AC=4,则线段BC的长为
12
12

查看答案和解析>>

同步练习册答案