精英家教网 > 初中数学 > 题目详情
9.已知AB为⊙O的直径,C为⊙O上一点,AB=2AC.
(1)如图①,点P是弧BC上一点,求∠APC的大小;
(2)如图②,过点C作⊙O的切线MC,过点B作BD⊥MC于点D,BD与⊙O交于点E,若AB=4,求CE的长.

分析 (1)连接OC,由AB为⊙O的直径,AB=2AC,得到△AOC是等边三角形,根据等边三角形的性质得到∠AOC=60°,于是得到结论;
(2)连接AE,OC与AE相交于F,由MC是⊙O的切线,得到MC⊥OC,求得∠MCO=∠CDB=90°,根据爬长城的判定定理得到BD∥OC,由平行线的性质得到∠AFO=∠AEB,由AB为⊙O的直径,得到∠AEB=90°,由垂径定理得到$\widehat{CE}=\widehat{AC}$,于是得到结论.

解答 解:(1)连接OC,
∵AB为⊙O的直径,AB=2AC,
∴OA=OC=AC,
∴△AOC是等边三角形,
∴∠AOC=60°,
∴∠APC=$\frac{1}{2}∠$AOC=30°;

(2)连接AE,OC与AE相交于F,
∵MC是⊙O的切线,
∴MC⊥OC,
∵BD⊥MC,
∴∠MCO=∠CDB=90°,
∴BD∥OC,
∴∠AFO=∠AEB,
∵AB为⊙O的直径,
∴∠AEB=90°,
∴∠AFO=90°,
∴OC⊥AE,
∴$\widehat{CE}=\widehat{AC}$,
∴CE=AC=$\frac{1}{2}$AB=$\frac{1}{2}×$4=2.

点评 本题考查了切线的性质,等边三角形的性质,垂径定理,平行线的判定和性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,四边形ABCD是平行四边形.
(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:
①作∠BAD的平分线,交CD于E,交BC的延长线于F;②连接BE;
(2)在(1)作出图形中,若∠F=45°,AB=8,DE=5,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.为了传承优秀传统文化,我县团委组织了一次全县有3000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分频数频率
50≤x<60100.05
 60≤x<70300.15
 70≤x<8040n
 80≤x<90m0.35
 90≤x≤100500.25
请根据所给信息,解答下列问题:
(1)m=70,n=0.2;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在80≤x<90分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知关于x的方程x2-4x+m=0有两个不相等的实数根,那么m的取值范围是m<4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知抛物线y=ax2-2x+c经过△ABC的三个顶点,其中点A(0,1),点B(9,10),AC∥x轴.
(1)求这条抛物线的解析式;
(2)求tan∠ABC的值;
(3)若点D为抛物线的顶点,点E是直线AC上一点,当△CDE与△ABC相似时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A,B的对应点分别是点D,E.
(1)请用圆规和直尺作出旋转后的三角形DCE(保留作图痕迹,不写作法和证明);
(2)求点A与点D之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:
x-5-4-3-2-1
y-7.5-2.50.51.50.5
根据表格提供的信息,有下列结论:
①该抛物线的对称轴是直线x=-2;②该抛物线与y轴的交点坐标为(0,-2.5);③b2-4ac=0;④若点A(0.5,y1)是该抛物线上一点.则y1<-2.5.则所有正确的结论的序号是①②④.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.计算:$\sqrt{7}$×$\root{3}{7}$×$\root{6}{7}$═7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知A(1,-2)、B(-1,2)、E(2,a)、F(b,3),若将线段AB平移至EF,点A、E为对应点,则a+b的值为-1.

查看答案和解析>>

同步练习册答案