精英家教网 > 初中数学 > 题目详情

【题目】如图,ADBC相交于点OOA=ODOB=OC.下列结论正确的是(  )

A. AOB≌△DOC B. ABO≌△DOC C. A=C D. B=D

【答案】A

【解析】

根据全等三角形的性质与判定即可判定.

解:A项,在△AOB与△DOC中,OA=ODAOB=DOC(对顶角),OB=OC,AOB≌△DOC(ASA).故本选项正确;

B项,在△AOB与△DOC中,OA=ODAOB=DOC(对顶角),OB=OC,AOB≌△DOC(ASA).故本选项错误;

C项,∵△AOB≌△DOC(ASA),∴∠A=D,故本选项错误;

D项,∵△AOB≌△DOC(ASA),∴∠B=C,故本选项错误.

综上,本题选择A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A( ),点D的坐标为(0,1)
(1)求直线AD的解析式;
(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.

(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)
②是否存在满足条件的点P,使得PC= ?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知△ABC和△BDE都是等边三角形.则下列结论:①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等边三角形;⑤HB平分∠AHD.其中正确的有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为(

A.2
B.3
C.
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图1中,画一个三角形,使它的三边长都是有理数;

(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;

(3)在图3中,画一个正方形,使它的面积是10.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一节”期间,小明一家自驾游去了离家240千米的某地,如图是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.

(1)求出y(千米)与x(小时)之间的函数表达式;
(2)他们出发2小时时,离目的地还有多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学骑自行车去新华书店,如图表示他离家的距离y(千米)与所用的时间s(小时)之间关系的函数图象

(1)根据图象回答:小明家离新华书店千米,小明用了小时到达新华书店;
(2)小明从家出发两个半小时走了千米;
(3)直线CD的函数解析式为
(4)小明出发小时,离家12千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如上图所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.则 =

查看答案和解析>>

同步练习册答案