精英家教网 > 初中数学 > 题目详情
某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单价与日均销售量的关系如下:
售价单价(元)67891112
日均销售量(瓶)480440400360320240
(1)若记销售单价比每瓶进价多x元时,日均毛利润(毛利润=售价-进价-固定成本)为y元,求y关于x的函数解析式和自变量的取值范围;
(2)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?
(1)销售单价每增加1元,日均销售量减少40桶.设在进价基础上增加x元后,日均销售利润为y元,
这时日均销售量P=480-40(x-1)=520-40x,
故y关于x的函数解析式为:y=x(520-40x )-200=-40x2+520x-200(0<x<13),

(2)y=-40x2+520x-200
=-40(x-
13
2
2+1490,
∵0<
13
2
<13,
∴当x=
13
2
时,即销售单价定为11.5元,日均毛利润达到最大值1490元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=ax2+bx+c的顶点为C(1,0),且与直线l:y=x+m交y轴于同一点B(0,1),与直线l交于另一点A,D为抛物线的对称轴与直线l的交点,P为线段AB上的一动点(不与点A、B重合),过点P作y轴的平行线交抛物线于点E.
(1)求抛物线和直线l的函数解析式,及另一交点A的坐标;
(2)求△ABE的最大面积是多少?
(3)问是否存在这样的点P,使四边形PECD为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连接MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO.
(1)试直接写出点D的坐标;
(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连接OP.若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标;
(3)试问在(2)抛物线的对称轴上是否存在一点T,使得
|TO-TB|的值最大?若存在,则求出点T点的坐标;若不存在,则说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知点P是反比例函数y=
2
3
x
(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的
1
2
?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.
(2)求支柱MN的长度.
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:0<a<b<c,实数x、y满足2x+2y=a+b+c,2xy=ac,且x<y.求证:0<x<a,b<y<c.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某果品公司为指导今年的樱桃销售,对往年的市场销售情况进行调查统计,得到如下数据:
销售价x(元/kg)25242322
销售量y(kg)2000250030003500
(1)在如图坐标系中作出各组有序数对(x,y)所对应点,连接并观察所得图象,判定y与x之间函数关系式,并求出y与x关系式.
(2)若樱桃进价为12元/kg,求销售利润P(元)与销售价x(元/kg)之间函数关系式,并求售价多少元时,利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AD=12,AB=8,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.
(1)设CP=x,BE=y,试写出y关于x的函数关系式;
(2)当点P在什么位置时,线段BE最长?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:
(1)a>0
(2)当-1≤x≤1时,满足|ax2+bx+c|≤1;
(3)当-1≤x≤1时,ax+b有最大值2.
求常数a、b、c.

查看答案和解析>>

同步练习册答案