精英家教网 > 初中数学 > 题目详情
14、如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为
60
度,图中除△ABC外,还有等边三形是△
AOD
分析:根据旋转的性质及全等三角形的性质作答.
解答:解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,
∴△AOB≌△ADC,
∴OA=OD,∠BAO=∠DAC,
∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,
即∠OAD=60°,
所以旋转角为60°.
∵OA=OD,∠OAD=60°,
∴△AOD为等边三角形.
点评:此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,点D是线段BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交AB、AC于点F、G,连接BE.
(1)若△ABC的面积是1,则△ADE的最小面积为
3
4
3
4

(2)求证:△AEB≌ADC;
(3)探究四边形BCGE是怎样特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,P为△ABC内任意一点,PE∥AB,PF∥AC.那么,△PEF是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D是AC的中点,F为边AB上一动点,AF=nBF,E为直线BC上一点,且∠EDF=120°.
 
(1)如图1,当n=2时,求
CE
CD
=
1
3
1
3

(2)如图2,当n=
1
3
时,求证:CD=2CE;
(3)如图3,过点D作DM⊥BC于M,当
n=3
n=3
时,C点为线段EM的中点.

查看答案和解析>>

同步练习册答案