精英家教网 > 初中数学 > 题目详情
19.下列计算正确的是(  )
A.2a2•a=3a3B.(2a)2÷a=4aC.(-3a)2=3a2D.(a-b)2=a2-b2

分析 根据单项式乘以单项式法则、积的乘方和幂的乘方、完全平方公式分别求出每个式子的值,再判断即可.

解答 解:A、结果是2a3,故本选项不符合题意;
B、结果是4a,故本选项符合题意;
C、结果是9a2,故本选项不符合题意;
D、结果是a2-2ab+b2,故本选项不符合题意;
故选B.

点评 本题考查了单项式乘以单项式法则、积的乘方和幂的乘方、完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,大圆的半径R=10,小圆的半径r=6,大圆的弦AB与小圆相切于点P,有一以点O为圆心的圆面积恰好等于圆环的面积,则它的半径等于8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,直线y=$\frac{3}{4}$x-$\frac{3}{2}$与抛物线y=-$\frac{1}{4}$x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为m,点P的横坐标为x,当△PDE周长m最大时,求点P的坐标,并求出m的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG(逆时针方向作正方形APFG),随着点P的运动,正方形的大小,位置也随之改变,当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.为宣传2022年北京-张家口冬季奥运会,小王在网上销售一种成本为20元/件的本届冬季奥运会宣传文化衫,销售过程中的其他各种费用(不再含文化衫成本)总计50(百元),有关销售量y(百件)与销售价格x(元/件)的相关信息如下:
销售量y(百件)y=-0.1x+8y=$\frac{120}{x}$
销售价格x(元/件)30≤x≤6060<x≤80
(1)求销售这种文化衫的纯利润w(百元)与销售价格x(元/件)的函数关系式;
(2)销售价格定为多少元/件时,获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.“如果二次函数y=ax2+bx+c的图象与一次函数y=kx+b有两个公共点,那么一元二次方程ax2+bx+c=kx+b有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若方程|x2-4x+1|=a有四个解,则a的取值范围是0<a<3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.我市某中学为了解该校学生对四种国家一级保护动物的喜爱情况,围绕“在丹顶鹤、大熊猫、滇金丝猴、藏羚羊四种国家一级保护动物中,你最喜欢哪一种动物?(必选且只选一种)”这一问题,在全校范围内随机抽取部分同学进行问卷调查.根据调查结果绘制成如下不完整的条形统计图.其中最喜欢丹顶鹤的学生人数占被抽取人数的16%;请你根据以上信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)求在被调查的学生中,最喜欢滇金丝猴的学生有多少名?并补全条形统计图;
(3)如果全校有1200名学生,请你估计全校最喜欢大熊猫的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.对于每个正整数n,设f(n)表示n(n+1)的末位数字,例如:f(1)=2(1×2的末尾数字),f(2)=6 (2×3的末位数字),f(3)=2(3×4的末位数字),…,则f(1)+f(2)+f(3)+…f(2016)=4032.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点E在AD上,且DE=DC.
(1)求证:△BDE≌△ADC;
(2)若BC=8.4,tanC=$\frac{5}{2}$,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,AD与BC相交,连接AB、CD,写出∠A、∠B、∠C、∠D之间的关系∠A+∠B=∠C+∠D.

查看答案和解析>>

同步练习册答案