精英家教网 > 初中数学 > 题目详情
若x,y为实数,且满足|x-3|+
y+3
=0
,则(
x
y
)2013
的值是
-1
-1
分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.
解答:解:根据题意得,x-3=0,y+3=0,
解得x=3,y=-3,
所以,(
x
y
2013=(
3
-3
2013=-1.
故答案为:-1.
点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=a(x+1)(x-5)与x轴的交点为M,N.直线y=kx+b与x轴交于P(-2,0),与y轴交于C.若A,B两点在直线y=kx+b上,且AO=BO=
2
,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
(1)OH的长度等于
 
;k=
 
,b=
 

(2)是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D,N,E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个精英家教网E点,直线NE与直线AB的交点G是否总满足PB•PG<10
2
,写出探索过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=a(x+1)(x-5)与x轴的交点为M、N.直线y=kx+b

与x轴交于P(-2,0),与y轴交于C.若A、B两点在直线y=kx+b上,且AO=BO=,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.

1.OH的长度等于___________;k=___________,b=____________;

2.是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D、N、E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG<,写出探索过程.

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分12分)如图,抛物线ya(x1)(x5)x轴的交点为MN.直线ykxb

x轴交于P(20),与y轴交于C.若AB两点在直线ykxb上,且AO=BO=AOBOD为线段MN的中点,OHRt△OPC斜边上的高.

(1)OH的长度等于___________;k=___________,b=____________;

(2)是否存在实数a,使得抛物线ya(x1)(x5)上有一点E,满足以DNE为顶

点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG,写出探索过程.

 

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(36):27.3 实践与探索(解析版) 题型:解答题

如图,抛物线y=a(x+1)(x-5)与x轴的交点为M,N.直线y=kx+b与x轴交于P(-2,0),与y轴交于C.若A,B两点在直线y=kx+b上,且AO=BO=,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
(1)OH的长度等于______;k=______,b=______;
(2)是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D,N,E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB•PG<10,写出探索过程.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(35):2.4 二次函数的应用(解析版) 题型:解答题

如图,抛物线y=a(x+1)(x-5)与x轴的交点为M,N.直线y=kx+b与x轴交于P(-2,0),与y轴交于C.若A,B两点在直线y=kx+b上,且AO=BO=,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
(1)OH的长度等于______;k=______,b=______;
(2)是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D,N,E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB•PG<10,写出探索过程.

查看答案和解析>>

同步练习册答案