精英家教网 > 初中数学 > 题目详情

【题目】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.如:如图,数轴上点A表示的数为﹣2,点B表示的数为8,则A、两点间的距离AB=|﹣2﹣8|=10,线段AB的中点C表示的数为=3,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).

(1)用含t的代数式表示:t秒后,点P表示的数为   ,点Q表示的数为   

(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;

(3)求当t为何值时,PQ=AB;

(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

【答案】(1)-2+3t,8-2t;(2)相遇点表示的数为4;(3)当t=13,PQ=AB;(4)点P在运动过程中,线段MN的长度不发生变化,理由见解析.

【解析】

(1)根据题意,可以用含t的代数式表示出点P和点Q;

(2)根据当P、Q两点相遇时,P、Q表示的数相等,可以得到关于t的方程,然后求出t的值,本题得以解决;

(3)根据PQ=AB,可以求得相应的t的值;

(4)根据题意可以表示出点M和点N,从而可以解答本题.

(1)由题意可得,

t秒后,点P表示的数为:-2+3t,点Q表示的数为:8-2t,

故答案为:-2+3,8-2t;

(2)∵当P、Q两点相遇时,P、Q表示的数相等,

-2+3t=8-2t,

解得:t=2,

∴当t=2,P、Q相遇,

此时,-2+3t=-2+3×2=4,

∴相遇点表示的数为4;

(3)t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,

PQ=|(-2+3t)-(8-2t)|=|5t-10|,

|5t-10|=5,

解得:t=13,

∴当t=13,PQ=AB;

(4)点P在运动过程中,线段MN的长度不发生变化,

理由如下:∵点M表示的数为

N表示的数为

MN=

∴点P在运动过程中,线段MN的长度不发生变化.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,将沿直线BC方向平移的位置,GDE上一点,连接AG,过点AD作直线MN

(1)求证:

(2)若,判断AGDE的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:有一长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:

方案一:以较长的一组对边中点所在直线为轴旋转,如图①;

方案二:以较短的一组对边中点所在直线为轴旋转,如图②.

(1)请通过计算说明哪种方法构造的圆柱体积大;

(2)如果该矩形的长宽分别是5cm3cm呢?请通过计算说明哪种方法构造的圆柱体积大;

(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,E是CA延长线上的点,F是AC延长线上的点,且AE=CF.求证:

(1)△ABE≌△CDF;

(2)BE∥DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
(1)求证:PA为⊙O的切线;
(2)若OB=5,OP= ,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知两直线l1 , l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2 , 经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示.

(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1 , 抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.

(1)求证:四边形ABCD是菱形;

(2)若AB=5,AC=6,求AE,BF之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列做法正确的是(  )

A. 2(x+1)=x+7去括号、移项、合并同类项,得x=5

B. =1+去分母,得2(2x﹣1)=1+3(x﹣3)

C. 2(2x﹣1)﹣3(x﹣3)=1去括号,得4x﹣2﹣3x﹣9=1

D. 7x=4x﹣3移项,得7x﹣4x=3

查看答案和解析>>

同步练习册答案