精英家教网 > 初中数学 > 题目详情

如图,⊙O的直径AB=6,D为⊙O上一点,∠BAD=30°,过D点的切线交AB的延长线于点C.阴影部分的面积为________.(精确到0.01)

3.08
分析:根据三角形外角的性质和切线的性质得到三角形ODC是一个特殊的直角三角形,所以阴影部分的面积等于三角形ODC的面积减去扇形ODB的面积.
解答:∵⊙O的直径AB=6,
∴OA=OD=OB=3,
∵∠BAD=30°,
∴∠DOB=60°,
∵CD切⊙O于点D,
∴∠ODC=90°,
∴CD=OD•tan∠DOC=3×=3
∴S阴影部分=S△CDO-S扇形BDO
=OD•CD-
=
≈3.08.
故答案为:3.08.
点评:本题考查了扇形的面积计算方法和切线的性质,解题的关键是利用切线的性质和三角形的外角的性质求得∠DOB的度数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径AB与弦CD(不是直径)相交于E,E是CD的中点,过点B作BF∥CD交AD的延长线于
点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为5,∠BCD=38°,求线段BF、BC的长.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB,CD互相垂直,P为  上任意一点,连PC,PA,PD,PB,下列结论:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•柳州)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=
92

(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是
4
3
cm
4
3
cm

查看答案和解析>>

同步练习册答案