精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AB=4,BC=3,将△ABC沿AC折叠,点B落在B′处,AB′交CD于E,P为AC上的一个动点,PH⊥AB′于H,PG⊥CD于G,则PG+PH的值为
3
3
分析:延长GP交AB于点F,根据矩形的性质就可以得出CD∥AB,可以得出PF⊥AB,由角平分线的性质就可以得出HP=FP,EF的值就是PG+PH的值.
解答:解:延长GP交AB于点F.
∵四边形ABCD是矩形,
∴AD=BC,AB=CD,AB∥CD,∠B=∠BCD=∠D=∠DAB=90°,
∴∠CGP=∠AFG.
∵PG⊥CD于G,
∴∠CGP=90°,
∴∠AFG=90°.
∴GF⊥AB,
∴∠EFB=90°,
∴∠CGP=∠EFB=∠B=90°
∴四边形EFBC是矩形,
∴EF=BC
∵△ABC与△AB′C关于AC对称,
∴△ABC≌△AB′C,
∴∠B′AC=∠BAC,
∵PH⊥AB′,PF⊥AB,
∴PH=PF.
∴PG+PH=PG+PF=EF.
∴BC=3,
∴EF=3,
∴PG+PH=3.
故答案为:3.
点评:本题考查了矩形的性质的运用,角平分线的性质的运用,轴对称的性质的运用,解答时运用轴对称的性质求解是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案