【题目】已知线段AB=4.8cm,C是线段AB的中点,D是线段CB的中点,点E在AB上,且CE=AC,则DE的长为_____.
【答案】2cm或0.4cm
【解析】
分点E在线段AC上及点E在线段BC上两种情况考虑:(1)当点E在线段AC上时,根据AB的长度及点C、D分别是线段AB、CB的中点,即可得出CD、CE的长度,将其代入DE=CD+CE中即可求出DE的长;(2)当点E在线段CB上时,根据AB的长度及点C、D分别是线段AB、CB的中点,即可得出CD、CE的长度,将其代入DE=CD﹣CE中即可求出DE的长.综上即可得出结论.
(1)当点E在线段AC上时,如图1所示.
∵AB=4.8cm,点C是线段AB的中点,
∴AC=BC=AB=2.4cm.
∵点D是线段CB的中点,
∴CD=BC=1.2cm.
又∵CE=AC,
∴CE=0.8cm,
∴DE=CD+CE=1.2+0.8=2(cm).
(2)当点E在线段BC上时,如图2所示.
∵AB=4.8cm,点C是线段AB的中点,
∴AC=BC=AB=2.4cm.
∵点D是线段CB的中点,
∴CD=BC=1.2cm.
又∵CE=AC,
∴CE=0.8cm,
∴DE=CD﹣CE=1.2﹣0.8=0.4(cm).
综上所述:DE的长为2cm或0.4cm,
故答案为:2cm或0.4cm.
科目:初中数学 来源: 题型:
【题目】已知数轴上两点A,B对应的数分别是﹣10,8,P,Q,N为数轴上三个动点,点P从点A出发速度为每秒2个单位,点Q从点B出发,速度为点P的2倍,点N从原点出发,速度为每秒1个单位.
(1)若P,Q两点不动,动点N是线段AB的三等分点时,点N所表示的数是 ;
(2)若点P向左运动,同时点Q向右运动,求多长时间点P与点Q相距32个单位?
(3)若点P,Q,N同时都向右运动求多长时间点N到点P和点Q的距离相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面内有四个点A,B,C,D. 根据下列语句画图:
①画直线BC;
②画射线AD交直线于点E;
③连接BD,用圆规在线段BD的延长线上截取DF=BD;
④在图中确定点O,使点O到点A,B,C,D的距离之和最小.
(友情提醒:截取用圆规,并保留痕迹;画完图要下结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.
例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A, C的“联盟点”.
(1)若点A表示数-2, 点B表示的数2,下列各数,0,4,6所对应的点分别C1,C2 ,C3 ,C4,其中是点A,B的“联盟点”的是 ;
(2)点A表示数-10, 点B表示的数30,P在为数轴上一个动点:
①若点P在点B的左侧,且点P是点A, B的“联盟点”,求此时点P表示的数;
②若点P在点B的右侧,点P,A, B中,有一个点恰好是其它两个点的“联盟点”,写出此时点P表示的数 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课外活动时间,甲、乙、丙、丁4名同学相约进行羽毛球比赛.
(1)如果将4名同学随机分成两组进行对打,求恰好选中甲乙两人对打的概率;
(2)如果确定由丁担任裁判,用“手心、手背”的方法在另三人中竞选两人进行比赛.竞选规则是:三人同时伸出“手心”或“手背”中的一种手势,如果恰好只有两人伸出的手势相同,那么这两人上场,否则重新竞选.这三人伸出“手心”或“手背”都是随机的,求一次竞选就能确定甲、乙进行比赛的概率.
【答案】(1);(2)
【解析】分析:列举出将4名同学随机分成两组进行对打所有可能的结果,找出甲乙两人对打的情况数,根据概率公式计算即可.
画树状图写出所有的情况,根据概率的求法计算概率.
详解:(1)甲同学能和另一个同学对打的情况有三种:
(甲、乙),(甲、丙),(甲、丁)
则恰好选中甲乙两人对打的概率为:
(2)树状图如下:
一共有8种等可能的情况,其中能确定甲乙比赛的可能为(手心、手心、手背)、(手背、手背、手心)两种情况,因此,一次竞选就能确定甲、乙进行比赛的概率为.
点睛:考查概率的计算,明确概率的意义时解题的关键,概率等于所求情况数与总情况数的比.
【题型】解答题
【结束】
22
【题目】为了“绿化环境,美化家园”,3月12日(植树节)上午8点,某校901、902班同学同时参加义务植树.901班同学始终以同一速度种植树苗,种植树苗的棵数y1与种植时间x(小时)的函数图象如图所示;902班同学开始以1小时种植40棵的速度工作了1.5小时后,因需更换工具而停下休息半小时,更换工具后种植速度提高至原来的1.5倍.
(1)求902班同学上午11点时种植的树苗棵数;
(2)分别求出901班种植数量y1、902班种植数量y2与种植时间x(小时)之间的函数关系式,并在所给坐标系上画出y2关于x的函数图象;
(3)已知购买树苗不多于120棵时,每棵树苗的价格是20元;购买树苗超过120棵时,超过的部分每棵价格17元.若本次植树所购树苗的平均成本是18元,则两班同学上午几点可以共同完成本次植树任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点D(如图1).
(1)若AB=2,∠B=30°,求CD的长;
(2) 取AC的中点E,连结D、E(如图2),求证:DE与⊙O相切.
【答案】(1);(2)见解析
【解析】分析:连接AD ,根据AC是⊙O的切线,AB是⊙O的直径,得到∠CAB=∠ADB=90°,根据∠B=30°,解直角三角形求得的长度.
连接OD,AD.根据DE=CE=EA,∠EDA=∠EAD. 根据OD=OA,得到
∠ODA=∠DAO,得到∠EDA+∠ODA=∠EAD+∠DAO.得到∠EDO=90°即可.
详解:(1)如图,连接AD ,
∵AC是⊙O的切线,AB是⊙O的直径,
∴∠CAB=∠ADB=90°,
∴ΔCAB,ΔCAD均是直角三角形.
∴∠CAD=∠B=30°.
在RtΔCAB中,AC=ABtan30°=
∴在RtΔCAD中,CD=ACsin30°=
(2)如图,连接OD,AD.
∵AC是⊙O的切线,AB是⊙O的直径,
∴∠CAB=∠ADB=∠ADC=90°,
又∵E为AC中点,
∴DE=CE=EA,
∴∠EDA=∠EAD.
∵OD=OA,
∴∠ODA=∠DAO,
∴∠EDA+∠ODA=∠EAD+∠DAO.
即:∠EDO=∠EAO=90°.
又点D在⊙O上,因此DE与⊙O相切.
点睛:考查解直角三角形,圆周角定理,切线的判定与性质等,属于圆的综合题,比较基础.注意切线的证明方法,是高频考点.
【题型】解答题
【结束】
21
【题目】课外活动时间,甲、乙、丙、丁4名同学相约进行羽毛球比赛.
(1)如果将4名同学随机分成两组进行对打,求恰好选中甲乙两人对打的概率;
(2)如果确定由丁担任裁判,用“手心、手背”的方法在另三人中竞选两人进行比赛.竞选规则是:三人同时伸出“手心”或“手背”中的一种手势,如果恰好只有两人伸出的手势相同,那么这两人上场,否则重新竞选.这三人伸出“手心”或“手背”都是随机的,求一次竞选就能确定甲、乙进行比赛的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把2018个正整数1,2,3,4,…,2018按如图方式排列成一个表.
(1)用如图方式框住表中任意4个数,记左上角的一个数为,则另三个数用含的式子表示出来,从小到大依次是__________、___________、_______________(请直接填写答案);
(2)用(1)中方式被框住的4个数之和可能等于2019吗?如果可能,请求出的值;如果不可能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年元旦莫小贝在襄阳万达广场购进一家商铺,装修后用于销售某品牌的女装.2018元旦莫小贝盘点时发现:2017年自家店内女装的平均成本为4百元/件,当年的销售量 (百件)与平均销售价格 (百元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.
(1)请求出与之间的函数关系式;
(2)若莫小贝购商铺及装修一共花了120万元,请通过计算说明2017年莫小贝是赚还是亏?若赚,最多赚多少元?若亏,最少亏多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( )
A. 四边形ABCD由矩形变为平行四边形 B. BD的长度增大
C. 四边形ABCD的面积不变 D. 四边形ABCD的周长不变
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com