精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,EBC的中点,FCD上一点,且CF=CD,求证:∠AEF=90°.

【答案】证明见解析.

【解析】试题分析利用正方形的性质得出AB=BC=CD=DAB=C=D=90°,设出边长为a进一步利用勾股定理求得AEEFAF的长再利用勾股定理逆定理判定即可.

试题解析证明ABCD为正方形AB=BC=CD=DAB=C=D=90°.设AB=BC=CD=DA=aEBC的中点CF=CDBE=EC=aCF=a.在RtABE由勾股定理可得AE2=AB2+BE2=a2同理可得EF2=EC2+FC2=a2AF2=AD2+DF2=a2AE2+EF2=AF2∴△AEF为直角三角形∴∠AEF=90°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D选在何处时,所用时间最短?
【特例分析】若n=2,则时间t= + ,当a为定值时,问题转化为:在BC上确定一点D,使得AD+ 的值最小.如图②,过点C做射线CM,使得∠BCM=30°.

(1)过点D作DE⊥CM,垂足为E,试说明:DE=
(2)【问题解决】请在图②中画出所用时间最短的登陆点D′,并说明理由.
(3)【模型运用】请你仿照“特例分析”中的相关步骤,解决图①中的问题(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等).
(4)如图③,海面上一标志A到海岸BC的距离AB=300m,BC=300m.救生员在C点处发现标志A处有人求救,
立刻前去营救,若救生员在岸上跑的速度都是6m/s,在海中游泳的速度都是2m/s,求救生员从C点出发到
达A处的最短时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.

(1)正方体的棱长为cm;
(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;
(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y= (k>0,x>0)的图象经过点C,则k的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,EF是四边形ABCD的对角线AC上的两点,AF=CEDF=BEDFBE

求证:(1)AFD≌△CEB.(2)四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB//DG, ADEF,

(1)试说明:

(2) DG是∠ADC的平分线, ,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,(1)AOB60°,∠BOC36°OD平分∠BOCOE平分∠AOC,则∠EOD____度;

2)若∠AOB90°,OD平分∠BOCOE平分∠AOC,则∠EOD__________;

3)若∠AOB=α,其它条件同(2),则∠EOD_________________.

类比应用:

如图②,已知线段ABC是线段AB上任一点,DE分别是ACCB的中点,试猜想DEAB的数量关系为_____________,并写出求解过程.

查看答案和解析>>

同步练习册答案