精英家教网 > 初中数学 > 题目详情
11、如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.

(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论.
(2)当点P移动到AB的外侧时,如图(2),是否仍有(1)的结论?如果不是
∠P=∠C-∠A
,请写出你的猜想(不要求证明).
(3)当点P移动到如图(3)的位置时,∠P与∠A、∠C又有怎样的关系?能否利用(1)的结论来证明?还有其他的方法吗?请写出一种.
分析:(1)延长AP后通过外角定理可得出结论.
(2)利用外角定理可直接得出答案.
(3)延长BA到E,延长DC到F,利用内角和定理解答.
解答:
证明:(1)∠P=∠A+∠C,
延长AP交CD与点E.
∵AB∥CD,∴∠A=∠AEC.
又∵∠APC是△PCE的外角,
∴∠APC=∠C+∠AEC.
∴∠APC=∠A+∠C.
(2)否;∠P=∠C-∠A.
(3)∠P=360°-(∠A+∠C).
①延长BA到E,延长DC到F,
由(1)得∠P=∠PAE+∠PCF.
∵∠PAE=180°-∠PAB,∠PCF=180°-∠PCD,
∴∠P=360°-(∠PAB+∠PCD).
②连接AC.
∵AB∥CD,∴∠CAB+∠ACD=180°.
∵∠PAC+∠PCA=180°-∠P,
∵∠CAB+∠ACD+∠PAC+∠PCA=360°-∠P,
即∠P=360°-(∠PAB+∠PCD).
点评:本题考查平行线的性质,难度不大,注意图形的变化带来的影响,不要有惯性思维.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,已知⊙A和⊙B的半径相等,那么在这两个圆所在的平面内可以作为旋转中心将⊙A旋转至⊙B的点有
无数
个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.

(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论.
(2)当点P移动到AB的外侧时,如图(2),是否仍有(1)的结论?如果不是______,请写出你的猜想(不要求证明).
(3)当点P移动到如图(3)的位置时,∠P与∠A、∠C又有怎样的关系?能否利用(1)的结论来证明?还有其他的方法吗?请写出一种.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图7-24,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.

图7-24

(1)当点P移动到AB、CD之间时,如图7-24(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论.

(2)当点P移动到AB的外侧时,如图7-24(2),是否仍有(1)的结论?如果不是________________,请写出你的猜想(不要求证明).

(3)当点P移动到如图7-24(3)的位置时,∠P与∠A、∠C又有怎样的关系?能否利用(1)的结论来证明?还有其他的方法吗?请写出一种.

查看答案和解析>>

科目:初中数学 来源:2011年中考数学总复习专题:相交线与平行线(解析版) 题型:解答题

如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.

(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论.
(2)当点P移动到AB的外侧时,如图(2),是否仍有(1)的结论?如果不是______,请写出你的猜想(不要求证明).
(3)当点P移动到如图(3)的位置时,∠P与∠A、∠C又有怎样的关系?能否利用(1)的结论来证明?还有其他的方法吗?请写出一种.

查看答案和解析>>

同步练习册答案