精英家教网 > 初中数学 > 题目详情
2.如图,△ABC中,AB=AC=5,∠BAC=100°,点D在线段BC上运动(不与点B、C重合),连接AD,作∠1=∠C,DE交线段AC于点E.
(1)若∠BAD=20°,求∠EDC的度数;
(2)当DC等于多少时,△ABD≌△DCE?试说明理由;
(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;
若不能,请说明理由.

分析 (1)利用三角形的外角的性质得出答案即可;
(2)利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC得出∠BAD=∠EDC,进而求出△ABD≌△DCE;
(3)根据等腰三角形的判定以及分类讨论得出即可.

解答 解(1)∵AB=AC,
∴∠B=∠C=$\frac{1}{2}$(180°-∠BAC)=40°,
∵∠1=∠C,
∴∠1=∠B=40°,
∵∠ADC=∠B+∠BAD,∠ADC=∠1+∠EDC.
∴∠EDC=∠BAD=20°

(2)当DC=5时,△ABD≌△DCE;
理由:∵∠ADE=40°,∠B=40°,
又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.
∴∠BAD=∠EDC.
在△ABD和△DCE中,
$\left\{\begin{array}{l}{∠B=∠C}\\{AB=CD}\\{∠BAD=∠EDC}\end{array}\right.$,
∴△ABD≌△DCE(ASA);

(3)当∠BAD=30°时,
∵∠B=∠C=40°,
∴∠BAC=100°,
∵∠ADE=40°,∠BAD=30°,
∴∠DAE=70°,
∴∠AED=180°-40°-70°=70°,
∴DA=DE,这时△ADE为等腰三角形;
当∠BAD=60°时,∵∠B=∠C=40°,
∴∠BAC=100°,
∵∠ADE=40°,∠BAD=60°,∠DAE=40°,
∴EA=ED,这时△ADE为等腰三角形.

点评 此题主要考查了全等三角形的判定与性质和三角形内角和定理以及等腰三角形的性质等知识,根据已知得出△ABD≌△DCE是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.某市举行自行车环城赛,每圈长12千米,已知选手甲与选手乙的速度比为5:7,两人同时同地同向出发后,2小时30分第一次相遇,问乙比甲每分钟快多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,二次函数y=ax2+bx+c(a≠0)的图象过原点O与点A(3,0).
(1)判断b的符号,并求出c的值和该二次函数图象的顶点的横坐标;
(2)若M(m,y1),N(m+n,y2)(n>0)是该二次函数图象上的两点,当y1=y2时,求m,n之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知AC⊥BC,DF⊥EF,BC 与EF交于O,AC=DF,AE=BD
求证:
(1)BC=EF;
(2)△OEB是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某单位为增强职工的安全意识,举办了安全应急知识竞赛活动,为了解情况,从中抽取部分职工的竞赛成绩(分数为正整数)进行统计,整理成下面的表格和统计图
成绩(分)49.5-59.559.5-69.569.5-79.579.5-89.589.5-100.5
频数(人)  20 32  a   b   c
频率    0.08    0.20    0.36
(1)直接写出a、b、c的值,并补全条形统计图.
(2)这次抽样调查的数据中,中位数在哪个分数段.
(3)已知本次竞赛中有5人获得满分,其中有三名女职工,两名男职工.请用树状图或列表的方法求“从这五位满分获得者中随机抽取两人刚好是一男一女”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,点M、N分别在等边△ABC的BC、CA边上,且BM=CN,AM、BN交于点Q.
(1)求证:∠BQM=60°;
(2)对以下两个问题:
①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题中的点M、N分别移到BC,CA的延长线上(如图2),是否仍能得到∠BQM=60°?
请你判断,并在下列横线上填写“是”或“否”:①是;②是;并对①、②的判断,选择一个给出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,点C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求证:△ACD≌△BCE;
(2)若∠D=47°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.计算:-1-2=(  )
A.1B.-1C.-2D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,CD是AB边上的中线,已知∠B=45°,tan∠ACB=3,AC=$\sqrt{10}$,求:
(1)△ABC的面积;
(2)sin∠ACD的值.

查看答案和解析>>

同步练习册答案