分析 先根据∠C=90°,∠BAC=60°,AD平分∠BAC,DE⊥AB,求得∠DAE=30°=∠B,∠ADC=∠ADE=60°,再根据DF平分∠BDE,FG⊥BC,求得FG=FE,∠EDF=30°,设FG=x,根据AB=18,列出方程求解即可.
解答 解:∵∠C=90°,∠BAC=60°,AD平分∠BAC,DE⊥AB,
∴∠DAE=30°=∠B,∠ADC=∠ADE=60°,
又∵DF平分∠BDE,FG⊥BC,
∴FG=FE,∠EDF=30°,
设FG=x,则BF=2x,DE=$\sqrt{3}$x,AE=$\sqrt{3}$DE=3x,
∵Rt△ABC中AC=9,
∴AB=18,即2x+x+3x=18,
解得x=3,
即FG=3.
故答案为:3
点评 本题主要考查了角平分线的性质,以及含30°角的直角三角形的性质,解题时注意,在直角三角形中,30°角所对的直角边等于斜边的一半.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ($\sqrt{7}$-$\sqrt{3}$)2=7-3=4 | B. | ($\sqrt{x}$+$\sqrt{2x}$)•(-$\sqrt{x}$+$\sqrt{2x}$)=2x-x=x | ||
C. | ($\sqrt{7}$+$\sqrt{3}$)•$\sqrt{10}$=$\sqrt{10}$•$\sqrt{10}$=10 | D. | ($\sqrt{a}$+2$\sqrt{b}$)($\sqrt{a}$-$\sqrt{2b}$)=a-4b |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com