精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.
证明见解析.

试题分析:由AD∥BC,可证明△EAD∽△ECB,利用相似三角形的性质即可求出BE的长,过D作DF∥AC交BC延长线于F,则四边形ACFD是平行四边形,所以CF=AD,再根据勾股定理的逆定理证明BD⊥DF即可证明AC⊥BD.
试题解析:∵AD∥BC,∴△EAD∽△ECB. ∴AE:CE=DE:BE.
∵AE=4,CE=8,DE=3,∴BE=6.
∵S梯形=(AD+BC)×=54,∴AD+BC=15.
过D作DF∥AC交BC延长线于F,则四边形ACFD是平行四边形,
∴CF="AD." ∴BF=AD+BC=15.
在△BDF中,BD2+DF2=92+122=225,BF2=225,∴BD2+DF2=BF2. ∴BD⊥DF.
∵AC∥DF,∴AC⊥BD.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠C=90°,BC=8cm,,点P从B点出发,沿BC方向以2cm/m的速度移动,点Q从C出发,沿CA方向以1cm/m的速度移动。若P、Q同时分别从B、C出发,经过多少时间△CPQ与△CBA相似?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元.

(1)当FG长为多少米时,种草的面积与种花的面积相等?
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,D、E两点分别在AC、AB两边上,∠ABC=∠ADE,AB=7,AD=3,AE=2.7,求AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一天晚上,黎明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

夏季的一天,身高为1.6m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,于是得出树的高度为(  )
A.8mB.6.4mC.4.8mD.10m

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,DEAB分别交AC,BC于点D,E,若AD=2,CD=3,则△CDE与△CAB的周长比为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点都是方格纸(每个小方格均为正方形)中的格点,为使△∽△,则点应是四点中的(     ).
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.

(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.

查看答案和解析>>

同步练习册答案