精英家教网 > 初中数学 > 题目详情
5.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于$\frac{1}{2}$AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,求∠BAD的度数.

分析 先根据线段垂直平分线的性质得出∠C=∠DAC,再由三角形内角和定理求出∠BAC的度数,根据∠BAD=∠BAC-∠CAD即可得出结论.

解答 解:∵由题意可得:MN是AC的垂直平分线.
∴AD=DC.
∴∠C=∠DAC.
∵∠C=30°,
∴∠DAC=30°.           
∵∠B=55°,
∴∠BAC=95°.                               
∴∠BAD=∠BAC-∠CAD=65°.

点评 本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.计算:
(1)$\frac{x}{{x}^{2}-4}$-$\frac{1}{x-2}$
(2)$\frac{m+n}{m-n}$+$\frac{2m}{n-m}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解下列方程:
(1)$\frac{2x}{x-2}$-$\frac{2}{2-x}$=1
(2)$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.设在一个顶点周围有a个正三角形,b个正十二边形,这些正多边形恰好铺满地面.则a=1,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,直线AB∥CD,Rt△DEF如图放置,∠EDF=90°,若∠1+∠F=70°,则∠2的度数为20°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在等腰△ABC中,
(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线      段为线段AE,连接DE,则∠BDE的度数为30°;
(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将   线段AD绕点D逆时针旋转60°得到线段DE,连接BE.
①根据题意在图2中补全图形;
②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:
思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;
思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;
思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;

请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)
(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的数量关系,这个数量关系是k(BE+BD)=AC.(直接给出结论无须证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:
如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.
(1)已知A(-2,3),B(5,0),C(t,-2).
①当t=2时,点A,B,C的最优覆盖矩形的面积为35;
②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;
(2)已知点D(1,1).E(m,n)是函数y=$\frac{4}{x}$(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源:2017届湖北省枝江市九年级3月调研考试数学试卷(解析版) 题型:单选题

九(2)班体育委员用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的众数和中位数分别是(   )

A. 8,8 B. 8,8.5 C. 9,8 D. 9,8.5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在平面直角坐标系xOy中,?OABC的边OC在x轴上,A(1,4)、C(3,0)点D在AB上,D(3,4),过点D的直线l平分?OABC的面积,现将l绕点A逆时针旋转90°得直线l′,则直线l′的函数解析式为(  )
A.y=-2x+6B.y=-2x+6.5C.$y=-\frac{1}{2}x+\frac{5}{2}$D.$y=-\frac{1}{2}x+\frac{13}{2}$

查看答案和解析>>

同步练习册答案