【题目】某“综合与实践”小组开展了测量本校旗杆高度的实践活动,他们制订了测量方案,并利用课余时间完成了实地测量.他们在旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整)
任务一:两次测量A,B之间的距离的平均值是 m.
任务二:根据以上测量结果,请你帮助“综合与实践”小组求出学校学校旗杆GH的高度.
(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
任务三:该“综合与实践”小组在定制方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可).
【答案】任务一:5.5;任务二:旗杆GH的高度为14.7m;任务三:见解析.
【解析】
任务一:利用平均数公式进行计算即可得;
任务二:由题意可得:四边形ACDB,四边形ACEH都是矩形,则有EH=AC=1.5,CD=AB=5.5,设EG=x m,在Rt△DEG中,利用∠GDE的正切可得,在Rt△CEG中,利用∠GCE的正切可得CE=,再根据CD=CE-DE,可求得x的值,再根据GH=CE+EH即可求得答案;
任务三:写出的理由只要合理即可.
任务一:=5.5(m),
故答案为:5.5;
任务二:由题意可得:四边形ACDB,四边形ACEH都是矩形,
∴EH=AC=1.5,CD=AB=5.5,
设EG=x m,
在Rt△DEG中,∠DEC=90°,∠GDE=31°,
∵tan31°=,∴,
在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,
∵tan25.7°=,∴CE=,
∵CD=CE-DE,
∴,
∴,
∴GH=CE+EH=13.2+1.5=14.7,
答:旗杆GH的高度为14.7m;
任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是 ( )
A. ①②B. ①③C. ①③④D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.
(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;
(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正确结论的选项是( )
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.
(1)求证:DE是⊙O的切线.
(2)若DE,∠C=30°,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:
如图所示,在平面直角坐标系中,直线与反比例函数的图象交于,两点,过点作轴于点,过点作轴于点.
(1)求,的值及反比例函数的函数表达式;
(2)若点在线段上,且,请求出此时点的坐标;
(3)小颖在探索中发现:在轴正半轴上存在点,使得是以为顶角的等腰三角形.请你直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市大力发展乡村旅游产业,全力打造客都美丽乡村”,其中“客家美景、客家文化、客家美食”享誉全省,游人络绎不绝.去年我市某村村民抓住机遇,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮收入是住宿收入的2倍还多1万元.
(1)求去年该农家乐餐饮和住宿的收入各为多少万元?
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,动点从点出发,沿方向匀速运动,速度为;同时,动点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.设点,运动的时间是.过点作于点,连接,.
(1)为何值时,?
(2)设四边形的面积为,试求出与之间的关系式;
(3)是否存在某一时刻,使得若存在,求出的值;若不存在,请说明理由;
(4)当为何值时,?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com