精英家教网 > 初中数学 > 题目详情

【题目】综合与实践小组开展了测量本校旗杆高度的实践活动,他们制订了测量方案,并利用课余时间完成了实地测量.他们在旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整)

任务一:两次测量AB之间的距离的平均值是 m.

任务二:根据以上测量结果,请你帮助综合与实践小组求出学校学校旗杆GH的高度.

(参考数据:sin25.7°≈0.43cos25.7°≈0.90tan25.7°≈0.48sin31°≈0.52cos31°≈0.86tan31°≈0.60)

任务三:该综合与实践小组在定制方案时,讨论过利用物体在阳光下的影子测量旗杆的高度的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可).

【答案】任务一:5.5;任务二:旗杆GH的高度为14.7m;任务三:见解析.

【解析】

任务一:利用平均数公式进行计算即可得;

任务二:由题意可得:四边形ACDB,四边形ACEH都是矩形,则有EH=AC=1.5CD=AB=5.5,设EG=x m,在Rt△DEG中,利用∠GDE的正切可得,在Rt△CEG中,利用∠GCE的正切可得CE=,再根据CD=CE-DE,可求得x的值,再根据GH=CE+EH即可求得答案;

任务三:写出的理由只要合理即可.

任务一:=5.5(m)

故答案为:5.5

任务二:由题意可得:四边形ACDB,四边形ACEH都是矩形,

∴EH=AC=1.5CD=AB=5.5

EG=x m

Rt△DEG中,∠DEC=90°∠GDE=31°

∵tan31°=

Rt△CEG中,∠CEG=90°∠GCE=25.7°

∵tan25.7°=,∴CE=

∵CD=CE-DE

∴GH=CE+EH=13.2+1.5=14.7

答:旗杆GH的高度为14.7m

任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2bxc(a≠0)的图象经过点ABC.现有下面四个推断:①抛物线开口向下;②当x=2时,y取最大值;③当m<4时,关于x的一元二次方程ax2bxc=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点AC,当kx+c> ax2bxc时,x的取值范围是-4<x<0;其中推断正确的是

A. ①②B. ①③C. ①③④D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.

(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;

(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知是二次函数,且函数图象有最高点.

1)求的值;

2)当为何值时,的增大而减少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+ca≠0)的图象与x轴交于点A10),与y轴的交点B在(02)和(01)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc0 4a+2b+c0 4acb28a abc.其中含所有正确结论的选项是(  )

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰ABC中,ABAC,以AC为直径作⊙OBC于点D,过点DDEAB,垂足为E

1)求证:DE是⊙O的切线.

2)若DE,∠C30°,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:

如图所示,在平面直角坐标系中,直线与反比例函数的图象交于两点,过点轴于点,过点轴于点

1)求的值及反比例函数的函数表达式;

2)若点在线段上,且,请求出此时点的坐标;

3)小颖在探索中发现:在轴正半轴上存在点,使得是以为顶角的等腰三角形.请你直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市大力发展乡村旅游产业,全力打造客都美丽乡村,其中客家美景、客家文化、客家美食享誉全省,游人络绎不绝.去年我市某村村民抓住机遇,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮收入是住宿收入的2倍还多1万元.

1)求去年该农家乐餐饮和住宿的收入各为多少万元?

2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,动点从点出发,沿方向匀速运动,速度为;同时,动点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.设点运动的时间是.过点于点,连接

1为何值时,

2)设四边形的面积为,试求出之间的关系式;

3)是否存在某一时刻,使得若存在,求出的值;若不存在,请说明理由;

4)当为何值时,

查看答案和解析>>

同步练习册答案