【题目】如图,在中,,,、分别在、上,连接、交于点,且.
(1)如图1,求证:.
(2)如图2,是的中点,试探讨与的位置关系.
(3)如图3,、分别是、的中点,若,,求的面积.
【答案】(1)见解析;(2)AE⊥CF,理由见解析;(3).
【解析】
(1)直接判断出△ACE≌△BCD即可得出结论;
(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;
(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.
解:(1)在△ACE和△BCD中,
,
∴△ACE≌△BCD,
∴∠CAE=∠CBD;
(2)如图2,记AE与CF的交点为M,
在Rt△BCD中,点F是BD的中点,
∴CF=BF,
∴∠BCF=∠CBF,
由(1)知,∠CAE=∠CBD,
∴∠BCF=∠CAE,
∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,
∴∠AMC=90°,
∴AE⊥CF;
(3)如图3,记AE与CF的交点为M,
∵AC=2 ,
∴BC=AC=2,
∵CE=1,
∴CD=CE=1,
在Rt△BCD中,根据勾股定理得,BD==3,
∵点F是BD中点,
∴CF=DF= ,
同理:EG=,
连接EF,过点F作FH⊥BC,
∵∠ACB=90°,点F是BD的中点,
∴FH=,
∴S△CEF=CEFH=×1×=,
由(2)知,AE⊥CF,
∴S△CEF=CFME=×ME=ME,
∴ME=,
∴ME=,
∴GM=EG-ME=,
∴S△CFG=CFGM=××.
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,⊙O过BC的中点D,且DE垂直AC于E.
(1)求证:AB=AC;
(2)求证:DE是⊙O的切线;
(3)若AB=13,BC=10,求DE的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某电信公司计划在A,B两乡镇间的E处修建一座5G信号塔,且使C,D两个村庄到E的距离相等.已知AD⊥AB于点A,BC⊥AB于点B,AB=80km,AD=50km,BC=30km,求5G信号塔E应该建在离A乡镇多少千米的地方?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,AB∥OC,A(0,3),B(a,b),C(c,0),且a,c满足.点P从点A出发,以每秒1个单位长度的速度向点B运动,点Q从点O同时出发,以每秒2个单位长度的速度向点C运动,当点Q到达点C时,点P随之停止运动.设运动时间为t(秒).
(1)B,C两点的坐标为:B ,C ;
(2)当t为何值时,四边形PQCB是平行四边形?
(3)D为线段AB的中点,求当t为何值时,△ADQ是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校把一块三角形的废地开辟为动物园,如图所示,测得AC=80m,BC=60m,AB=100m.
(1)若入口E在边AB上,且与A、B等距离,求入口E到出口C的最短距离;
(2)若线段CD是一条小渠,且点D在边AB上.点D距点A多远时,水渠的距离最短?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求a的值,并写出抛物线的表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,
①当点M(2,n)时,求n,并求△ABM的面积.
②当点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值和此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=β度,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线交于点A2,得∠A2,…∠A2017BC与∠A2017CD的平分线交于点A2018,得∠A2018.则∠A2018=_____度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com