精英家教网 > 初中数学 > 题目详情
已知菱形ABCD的边长为5,∠DAB=60°.将菱形ABCD绕着A逆时针旋转得到菱形AEFG,设∠EAB=α,且0°<α<90°,连接DG、BE、CE、CF.
(1)如图(1),求证:△AGD≌△AEB;
(2)当α=60°时,在图(2)中画出图形并求出线段CF的长;
(3)若∠CEF=90°,在图(3)中画出图形并求出△CEF的面积.
(1)∵菱形ABCD绕着点A逆时针旋转得到菱形AEFG,
∴AG=AD,AE=AB,∠GAD=∠EAB=α.
∵四边形AEFG是菱形,
∴AD=AB.
∴AG=AE.
∴△AGD≌△AEB.(3分)

(2)解法一:如图(1),当α=60°时,AE与AD重合,(4分)

作DH⊥CF于H.由已知可得∠CDF=120°,DF=DC=5.
∴∠CDH=
1
2
∠CDF=60°,CH=
1
2
CF.
在Rt△CDH中,
∵CH=DCsin60°=5×
3
2
=
5
3
2
,(6分)
∴CF=2CH=5
3
.(7分)
解法二:如图(1),当α=60°时,AE与AD重合,(4分)
连接AF、AC、BD、AC与BD交于点O.
由题意,知AF=AC,∠FAC=60°.
∴△AFC是等边三角形.
∴FC=AC.
由已知,∠DAO=
1
2
∠BAD=30°,AC⊥BD,
∴AO=ADcos30°=
5
3
2
.(6分)
∴AC=2AO=5
3

∴FC=AC=5
3
.(7分)

(3)如图(2),当∠CEF=90°时,(8分)
延长CE交AG于M,连接AC.
∵四边形AEFG是菱形,
∴EFAG.
∵∠CEF=90°,
∴∠GME=90°.
∴∠AME=90°.(9分)
在Rt△AME中,AE=5,∠MAE=60°,
∴AM=AEcos60°=
5
2
,EM=AEsin60°=
5
3
2

在Rt△AMC中,易求AC=5
3

∴MC=
AC2-AM2
=
5
11
2

∴EC=MC-ME=
5
11
2
-
5
3
2

=
5
2
11
-
3
).(11分)
∴S△CEF=
1
2
•EC•EF=
25(
11
-
3
)
4
.(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥CD于点E,则BE的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l与AB边相交于点D.过点C作CEAB交直线l于点E,设∠AOD=α.
(1)当α等于多少度时,四边形EDBC是等腰梯形?并求此时AD的长;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论,其中正确的有______(填正确结论的序号).
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在四边形ABFC中∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.
(1)试探究,四边形BECF是什么特殊的四边形并证明之;
(2)若四边形BECF的面积是6cm2且BC+AC=
105
cm时.求AB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

菱形两条对角线长分别为16cm和12cm,则菱形的高为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.求证:四边形ADEF是菱形.
(2)一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知梯形上、下底分别为6,8,一条腰长为7,另一腰长为a,则a的取值范围是______.若这一腰长为奇数,则此梯形为______梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知等腰梯形ABCD中ADBC,BD平分∠ABC,BD⊥DC,且梯形ABCD的周长为30cm,则求AD的长.

查看答案和解析>>

同步练习册答案