精英家教网 > 初中数学 > 题目详情
21、已知:如图,点D、E分别为△ABC的边AB、AC的中点,将△ADE绕点D旋转180°至△BDF.
(1)小明发现四边形BCEF的形状是平行四边形,请你帮他把说理过程补齐.
理由是:因为△BDF是由△ADE绕点D旋转180°得到的所以△ADE与△BDF全等且点A、D、B在同一条直线上点E、D、F也在同一条直线上.
所以BF=AE,∠F=∠
AED

可得BF∥
AC

又因为E是AC的中点,所以EC=AE,
所以BF=
EC

因此,四边形BCEF是平行四边形(根据
一组对边平行切相等的四边形是平行四边形

(2)小明还发现在原有的△ABC中添加一个条件后,就可以使四边形BFEC成为一种特殊的平行四边形.你也来试试.
你认为添加条件
∠C=90°
后,四边形BFEC是
矩形
.(友情提示:我们将根据你所提出问题的难易程度,给予不同的分值.)理由是:
有一个角是直角的平行四边形是矩形
分析:(1)根据旋转前后两个图形的对应角相等、内错角相等,两条直线平行的性质进行填空;
(2)根据矩形、菱形、正方形的判定方法依次分析.
解答:解:(1)故答案为∠AED(1分);BF∥AC(2分);EC(3分);一组对边平行且相等的四边形为平行四边形.(4分);

(2)A层次:(提出问题(1分),说理1分)
添加条件∠C=90°后四边形BFEC为矩形.(5分)
理由:由(1)得四边形BFEC为平行四边形,又∠C=90°,即有一个角是直角的平行四边形是矩形.(6分).

B层次:(提出问题分,说理1分)
添加条件AC=2BC后四边形BFEC为菱形.(6分)
理由:由(1)得四边形BFEC为平行四边形又知AC=2CE,AC=2BC,所以EC=BC,即一组邻边相等的平行四边形是菱形.(8分)

C层次:(提出问题(3分),说理3分)
添加条件∠C=90°且AC=2BC时四边形BFEC为正方形.(7分)
理由:由(1)得四边形BFEC为平行四边形,又∠C=90°,即有一个角是直角的平行四边形是矩形,所以此时四边形BFEC为矩形,又因为AC=2CE,AC=2BC,所以EC=BC,一组邻边相等的矩形是正方形,所以此时四边形BFEC为正方形.(10分).
点评:此题的第二问是一道开放性试题,综合考查了旋转的性质以及特殊四边形的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知:如图,点O为?ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C(-
2
5
4
5
)
,E为直径精英家教网OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.
(1)求直线AB的解析式;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.BF,CE相交于点O.
(1)求证:∠ACE=∠DBF;
(2)若点B是AC的中点,∠E=60°,AE=4,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是半径为5cm的⊙O外的一点,OP=13cm,PT切⊙O于T,过P点作⊙O的割线PAB,(PB>PA).设PA=x,PB=y,求y关于x的函数解析式,并确定自变量x的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淮阴区模拟)已知:如图,点E、A、C在同一条直线上,AB=CE,AC=CD,BC=ED.求证:AB∥CD.

查看答案和解析>>

同步练习册答案