精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠B=90°,按如下步骤作图: ①分别以点B、C为圆心,大于 AB的长为半径作弧,两弧相交于点M和N;
②作直线MN交AC于点D,
③连接BD,
若AC=8,则BD的长为

【答案】4
【解析】解:由题意可得:MN是线段BC的垂直平分线, 则AB∥MN,
∵MN垂直平分线BC,
∴D是AC的中点,
∴BD是直角三角形ABC斜边上的中线,
故BD= AC=4.
所以答案是:4.
【考点精析】根据题目的已知条件,利用线段垂直平分线的性质和直角三角形斜边上的中线的相关知识可以得到问题的答案,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;直角三角形斜边上的中线等于斜边的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小王玩游戏:一张纸片,第一次将其撕成四小片,以后每次都将其中一片撕成更小的四片,如此进行下去.

(1)填空:当小王撕了3次后,共有________张纸片;

(2)填空:当小王撕了n次后,共有________张纸片.(用含n的代数式表示)

(3)小王说:我撕了若干次后,共有纸片2013张,小王说的对不对?若不对,请说明你的理由;若对的,请指出小王需撕多少次?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC、BD相交于点O,若AE平分∠BAD交BC于点E,且BO=BE,连接OE,则∠BOE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC的两条外角平分线BP,CP相交于点P,PEACAC的延长线于点E.ABC的周长为11,PE=2,SBPC=2,则SABC________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A,B(A在B的左侧),抛物线的对称轴为直线x=1,AB=4.
(1)求抛物线的表达式;
(2)抛物线上有两点M(x1 , y1)和N(x2 , y2),若x1<1,x2>1,x1+x2>2,试判断y1与y2的大小,并说明理由;
(3)直线l过A及C(0,﹣2),P为抛物线上一点(在x轴上方),过P作PD∥y轴交直线AC于点D,以PD为直径作⊙E,求⊙E在直线AC上截得的线段的最大长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)请你数一数,图中有多少个小于平角的角;

(2)求出∠BOD的度数;

(3)请通过计算说明OE是否平分∠BOC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,DAB边上的一点,过点DDEBC,ABC的角平分线于点E.

(1)如图1,当点E恰好在AC边上时,求证:∠ADE=2DEB;

(2)如图2,当点DBA的延长线上时,其余条件不变,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).

(1)当点N落在边BC上时,求t的值.
(2)当点N到点A、B的距离相等时,求t的值.
(3)当点Q沿D→B运动时,求S与t之间的函数表达式.
(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF与四边形PQMN的面积比为2:3时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1

(1)在图中画出△A1B1C1

(2)点A1,B1,C1的坐标分别为         

(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.

查看答案和解析>>

同步练习册答案