精英家教网 > 初中数学 > 题目详情
已知抛物线的顶点坐标是(4,2),与y轴的交点是(0,-6)
(1)求抛物线的解析式;
(2)求出抛物线与x轴的交点坐标;
(3)在左边的坐标系中画出这个函数的图象.
(1)根据抛物线的顶点坐标是(4,2),设抛物线解析式为:y=a(x-4)2+2,
把y轴的交点是(0,-6)代入得:y=-
1
2
(x-4)2+2
y=-
1
2
x2+4x-6


(2)令y=-
1
2
(x-4)2+2
=0,解得:x=2或x=6,
故与x轴的交点(2,0),(6,0);

(3)y=-
1
2
(x-4)2+2
,图象如图:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

衢江区某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价 w1与上市时间t的关系用图甲的一条折线表示;西红柿的种植成本 w2与上市时间t的关系用图乙表示的抛物线段表示.
(1)求出图甲表示的市场售价 w1与时间t的函数关系式;
(2)求出图乙表示的种植成本 w2与时间t的函数关系式;
(3)市场售价减去种植成本为纯收益,当0<t≤200时,何时上市西红柿纯收益最大?(售价与成本单位:元/百千克,时间单位:天)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+bx+c交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.
(1)求b、c的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形;
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的
1
3
?若存在,求点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=
2
3
x2的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴上,B1,B2,B3,…,B2008在二次函数y=
2
3
x2第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,请计算△A0B1A1的边长=______;△A1B2A2的边长=______;△A2007B2008A2008的边长=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一条抛物线y=
1
4
x2+mx+n经过点(0,
3
2
)与(4,
3
2
).
(1)求这条抛物线的解析式,并写出它的顶点坐标;
(2)现有一半径为1,圆心P在抛物线上运动的动圆,当⊙P与坐标轴相切时,求圆心P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.

探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)
①问:EF与抛物线y=-
1
8
x2
有几个公共点?
②当EF与抛物线只有一个公共点时,设A′(x,y),求
x
y
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,BD=20,AD>AB,设∠ABD=α,已知sinα是方程25x2-35x+12=0的一个实根,点E,F分别是BC,DC上的点,EC+CF=8,设BE=x,△AEF的面积等于y.
(1)求出y与x之间的函数关系式;
(2)当E,F两点在什么位置时,y有最小值并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,抛物线y=-
2
3
x2+bx+c经过点A,B,交正x轴于点D,E是OC上的动点(不与C重合)连接EB,过B点作BF⊥BE交y轴与F
(1)求b,c的值及D点的坐标;
(2)求点E在OC上运动时,四边形OEBF的面积有怎样的规律性?并证明你的结论;
(3)连接EF,BD,设OE=m,△BEF与△BED的面积之差为S,问:当m为何值时S最小,并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t-1.5t2,那么飞机着陆后滑行______米才能停止.

查看答案和解析>>

同步练习册答案