分析 (1)欲证明AE=AF,只要证明∠AEF=∠AFE即可.
(2)作CG∥EM,交BA的延长线于G,先证明AC=AG,再证明BE=EG即可解决问题.
解答 证明:(1)∵DA平分∠BAC,
∴∠BAD=∠CAD,
∵AD∥EM,
∴∠BAD=∠AEF,∠CAD=∠AFE,
∴∠AEF=∠AFE,
∴AE=AF.
(2)作CG∥EM,交BA的延长线于G.
∵EF∥CG,
∴∠G=∠AEF,∠ACG=∠AFE,
∵∠AEF=∠AFE,
∴∠G=∠ACG,
∴AG=AC,
∵EM∥CG,
∴$\frac{BM}{MC}$=$\frac{BE}{EG}$,∵BM=CM,
∴BE=EG,
∴BE=$\frac{1}{2}$BG=$\frac{1}{2}$(BA+AG)=$\frac{1}{2}$(AB+AC).
点评 本题考查三角形中位线定理、角平分线的性质、等腰三角形的判定和性质等知识,解题的关键是添加辅助线,构造等腰三角形,以及三角形中位线,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3.61×109 | B. | 3.61×108 | C. | 3.61×107 | D. | 3.61×106 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x1=-1,x2=2 | B. | x1=1,x2=-2 | C. | x1+x2=3 | D. | x1x2=2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com