精英家教网 > 初中数学 > 题目详情

【题目】结合数轴与绝对值的知识解答下列问题:

(1) 数轴上表示3的点和2的点两点间的距离为________

(2)如果在数轴上表示数a的点与表示 - 2的点的距离是3,那么a=________

(3)如果数轴上表示数a的点位于 -42之间,则=_________

(4)a=_____时,有最小值,且最小值=________________

(5)直接回答:当式子取最小值时,相应的a的取值范围是什么?

【答案】11- 5 61,9-1≤a≤5.

【解析】

(1)根据两点间的距离公式,可得答案;
(2)根据两点间的距离公式可得|a+2|=3,解方程可得答案;
(3)先计算绝对值,再合并同类项即可求解;
(4)根据线段上的点到线段两端点的距离的和最小,可得答案;
(5)根据线段上的点到线段两端点的距离的和最小,可得答案.

(1)数轴上表示32两点间的距离是32=1;

(2)依题意有

|a+2|=3,

解得a=51;

(3)∵数轴上表示数a的点位于42之间,

|a+4|+|a2|=a+4a+2=6;

(4)a=1时,

|a+5|+|a1|+|a4|=6+0+3=9;

(5)|a+9|+|a+1|+|a5|+|a7|取最小值时,相应的a取值范围是

最小值是a+9+a+1a+5a+7=22.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:

(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?

(2)与标准重量比较,20筐白菜总计超过或不足多少千克?

(3)若白菜每千克售价26元,则出售这20筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为(  )
A.(﹣3,7)
B.(﹣1,7)
C.(﹣4,10)
D.(0,10)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有2个信封A、B,信封A装有四张卡片上分别写有1、2、3、4,信封B装有三张卡片分别写有5、6、7,每张卡片除了数字没有任何区别.从这两个信封中随机抽取两张卡片.
(1)请你用列表法或画树状图的方法描述所有可能的结果;
(2)把卡片上的两个数相加,求“得到的和是3的倍数”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2开始,连续的偶数相加,它的和的情况如下表:

(1)当n个最小的连续偶数相加时,它们的和sn之间的关系式为s= (用含n的式子表示)

(2)并由此计算:

2+4+6+8+…+50;

52+54+56+…+100.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.
(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?
(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.
(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在ABC中,∠BAC=90°,ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.

(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;

(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;

(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;

①请直接写出CF,BC,CD三条线段之间的关系;

②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列各题

比较大小:________________(用填空)

画出数轴,在数轴上表示下列各数,并用连接:

有理数填入图中它所属于的集合的圈内.

已知如图:数轴上四点对应的有理数分别是整数,且有,则原点应是________.

点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案