精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠ACB=,BC>AC,以斜边AB所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA2+OB2=17,且线段OA、OB的长度是关于x的一元二次方程x2-mx+2(m-3)=0的两个根.

(1)求C点的坐标;

(2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E三点的抛物线的解析式,并画出此抛物线的草图;

(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.

答案:
解析:

  (1)∵线段OA、OB的长度是关于x的一元二次方程x2-mx+2(m-3)=0的两个根,∴又∵OA2+OB2=17.③把①、②代人③,得m2-4(m-3)=17.∴m2-4m-5=0.解之,得m-1或m=5.又知OA+OB=m>0,∴m=-1应舍去.∴当m=5时,得方程:x2-5x+4=0.解之,得x=1或x=4.∵BC>AC,∴OB>OA.∴OA=1,OB=4.在Rt△ABC中,∠ACB=,CO⊥AB,∴OC2=OA·OB=1×4=4.∴OC=2.∴(0,2);

  (2)∵OA=1,OB=4,C、E两点关于x轴对称,∴A(-1,0),B(4,0),E(0,-2).设经过A、B、E三点的抛物线的解式为y=ax2+bx+c,则,解之,得,所求抛物线的解析式为y=x2x-2;

  (3)存在.∵点E是抛物线与圆的交点,∴Rt△ACB≌Rt△AEB.∴E(0,-2)符合条件.∵圆心的坐标(,0)在抛物线的对称轴上,∴这个圆和这条抛物线均关于抛物线的对称轴对称.∴点E关于抛物线对称轴的对称点也符合题意.可求得(3,-2)∴抛物线上存在点P符合题意,它们的坐标是(0,-2)和(3,-2)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案